首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenomonas ruminantium 0078A was grown in a glucose-limited chemostat over a dilution rate range of 0.049-0-137/h. Fermentation products were acetate, propionate, succinate, lactate and C02; traces of ethanol were also detected. Succinate accounted for up to 52% of the substrate glucose carbon. When dilution rate was increased without a concomitant increase in glucose supply per unit time there were changes in the fermentation pattern which were not apparent when both dilution rate and glucose supply were simultaneously increased; the molar proportion of acetate increased at the expense of propionate.  相似文献   

2.
Aims: The objective of this study was to examine the effect of dilution rates (Ds, varying from 0·05 to 0·42 h?1) in glucose‐limited continuous culture on cell yield, cell composition, fermentation pattern and ammonia assimilation enzymes of Selenomonas ruminantium strain D. Methods and Results: All glucose‐limited continuous culture experiments were conducted under anaerobic conditions. Except for protein, all cell constituents including carbohydrates, RNA and DNA yielded significant cubic responses to Ds with the highest values at Ds of either 0·10 or 0·20 h?1. At Ds higher than 0·2 h?1, fermentation acid pattern shifted primarily from propionate and acetate to lactate production. Succinate also accumulated at the higher Ds (0·30 and 0·42 h?1). Glucose was most efficiently utilized by S. ruminantium D at 0·20 h?1 after which decreases in glucose and ATP yields were observed. Under energy limiting conditions, glutamine synthetase (GS) and glutamate dehydrogenase (GDH) appeared to be the major enzymes involved in nitrogen assimilation suggesting that other potential ammonia incorporating enzymes were of little importance in ammonia assimilation in S. ruminantium D. GS exhibited lower activities than GDH at all Ds, which indicates that the bacterial growth rate is not a primary regulator of their activities. Conclusions: Studied dilution rates influenced cell composition, fermentation pattern and nitrogen assimilation of S. ruminantium strain D grown in glucose‐limited continuous culture. Significance and Impact of the Study: Selenomonas ruminantium D is an ecologically and evolutionary important bacterium in ruminants and is present under most rumen dietary conditions. Characterizing the growth physiology and ammonia assimilation enzymes of S. ruminantium D during glucose limitation at Ds, which simulate the liquid turnover rates in rumen, will provide a better understanding of how this micro‐organism responds to differing growth conditions.  相似文献   

3.
Selenomonas ruminantium, a strictly anaerobic ruminal bacterium, was grown at various dilution rates (D = 0.05, 0.25, and 0.35 h-1) under glucose-limited continuous culture conditions. Suspensions of washed cells prepared anaerobically in mineral buffer were subjected to nutrient starvation (24 to 36 h; 39 degrees C; N2 atmosphere). Regardless of growth rate, viability declined logarithmically, and within about 2.5 h, about 50% of the populations were nonviable. After 24 h of starvation, the numbers of viable cells appeared to be inversely related to growth rate, the highest levels occurring with the slowest grown population. Cell dry weight, carbohydrate, protein, ribonucleic acid (RNA), and deoxyribonucleic acid declined logarithmically during starvation, and the decline rates of each were generally greater with cells grown at higher D values. Both cellular carbohydrate and RNA declined substantially during the first 12 h of starvation. Most of the cellular RNA that disappeared was found in the suspending buffer as low-molecular-weight, orcinol-positive materials. During growth, S. ruminantium made a variety of fermentation acids from glucose, but during starvation, acetate was the only acid made from catabolism of cellular material. Addition of glucose or vitamins to starving cell suspensions did not decrease loss of viability, whereas a starvation in the spent culture medium resulted in a slight decrease in the rate of viability loss. Overall, the data indicate that S. ruminantium strain D has very little survival capacity under the conditions tested compared with other bacterial species that have been studied.  相似文献   

4.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

5.
Agrobacterium radiobacter NCIB 11883 was grown in glucose-limited continuous culture at low dilution rate. Whole cells transported glucose using an energy-dependent mechanism which exhibited an accumulation ratio greater than 2000. Three major periplasmic proteins were purified and their potential role as glucose-binding proteins (GBP) were investigated using equilibrium dialysis. Two of these, GBP1 (Mr 36,500) and GBP2 (Mr 33,500), bound D-glucose with high affinity (KD 0.23 and 0.07 microM respectively), whereas the third protein (Mr 30,500) showed no binding ability. Competition experiments using various analogues showed that those which differed from glucose at C-6 (e.g. 6-chloro-6-deoxy-D-glucose and 6-deoxy-D-glucose) variably decreased the binding of glucose to both GBP1 and GBP2, whereas those which differed at C-4 (e.g. D-galactose) were only effective with GBP1. The rate of glucose uptake and the concentration of the glucose-binding proteins increased in parallel during prolonged growth under glucose-limitation due to the emergence of new strains in which GBP1 (e.g. strain AR18) or GBP2 (e.g. strain AR9), but not both, was hyperproduced and accounted for at least 27% of the total cell protein. It is concluded that A. radiobacter synthesizes two distinct periplasmic binding proteins which are involved in glucose transport, and that these proteins are maximally derepressed during growth under glucose limitation.  相似文献   

6.
7.
Microbacterium thermosphactum was grown at 25 degrees C in glucose-limited continuous culture under aerobic (greater than 120 microM oxygen) and anaerobic (less than 0.2 microM oxygen) conditions. The end products of the anaerobic metabolism of glucose were identified as L-lactate and ethanol. Together these compounds accounted for between 85 and 90% of the glucose utilized over the full range of growth rates studied. In addition, 4% of the glucose utilized was incorporated into cellular material. Under anaerobic conditions the molar growth yield was 40 g (dry weight) of cells per mol of glucose utilized, and the maintenance energy coefficient was 0.4 mmol of glucose utilized per g (dry weight) of cells per h. For cells grown under aerobic conditions in the corresponding values were 73 g/mol and 0.2 mmol/g per h, respectively. The molar growth yield with respect to adenosine 5'-triphosphate varied with the growth rate of the culture, and the true molar growth yield with respect to adenosine 5'-triphosphate was found to be 20 g/mol of adenosine 5'-triphosphate.  相似文献   

8.
Microbacterium thermosphactum was grown at 25 degrees C in glucose-limited continuous culture under aerobic (greater than 120 microM oxygen) and anaerobic (less than 0.2 microM oxygen) conditions. The end products of the anaerobic metabolism of glucose were identified as L-lactate and ethanol. Together these compounds accounted for between 85 and 90% of the glucose utilized over the full range of growth rates studied. In addition, 4% of the glucose utilized was incorporated into cellular material. Under anaerobic conditions the molar growth yield was 40 g (dry weight) of cells per mol of glucose utilized, and the maintenance energy coefficient was 0.4 mmol of glucose utilized per g (dry weight) of cells per h. For cells grown under aerobic conditions in the corresponding values were 73 g/mol and 0.2 mmol/g per h, respectively. The molar growth yield with respect to adenosine 5'-triphosphate varied with the growth rate of the culture, and the true molar growth yield with respect to adenosine 5'-triphosphate was found to be 20 g/mol of adenosine 5'-triphosphate.  相似文献   

9.
Cytoplasmic reserve polysaccharide of Selenomonas ruminantium.   总被引:8,自引:4,他引:4       下载免费PDF全文
Selenomonas ruminantium accumulated large quantities of intracellular polysaccharide when grown in simple defined medium in a chemostat, particularly at low dilution rate under NH3 limitation when the carbohydrate content of the cells was greater than 40% of the dry weight. This polysaccharide was used as a source of energy under conditions of energy starvation. Abundant, densely staining cytoplasmic granules were observed by electron microscopy in sections stained by the periodic acid-thiocarbohydrazide-osmium technique. The polysaccharide was extracted in 30% KOH followed by precipitation with 60% ethanol and was found to be a glucose homopolymer. Sepharose 4B gel filtration and iodine-complex spectroscopy showed that the polysaccharide was of the glycogen type with a molecular weight of 5 X 10(5) to greater than 20 X 10(5) and an average chain length of 12 glucose residues.  相似文献   

10.
Diphenyl, o-phenylphenol and thiabendazole were analyzed in citrus fruits. The peel and edible parts were separately homogenized. These fungicides were extracted with dichloromethane from the homogenate, and they were fractionated with Sephadex LH-20 columns. Gas chromatography was used to determine the presence of these fungicides. The fungicides found in edible parts of citrus fruits were confirmed by gas chromatography-mass spectrometry.

Diphenyl, o-phenylphenol and thiabendazole were detected in imported grapefruits, lemons and oranges. Almost all fungicides were found in the peel. The concentrations of the three fungicides in the edible parts were very low. Some samples contained all three fungicides in the edible parts.  相似文献   

11.
Summary The production of organic acids (acetate, lactate, and propionate) by the anaerobic, ruminal bacteriumSelenomonas ruminantium HD4 was investigated in both glucose-limited and glucose-sufficient (phosphate-limited) continuous cultures. The fermentation pattern of products exhibited a shift upon release of glucose limitation from acetate and propionate to lactate at a dilution rate of 0.2 h–1. Glucose sufficiency brought about two-to fourfold increase in specific glucose utilization rate, lactate productivity, and lactate yield relative to glucose-limited growth conditions. The increased lactate production under glucose-sufficient growth conditions was attributed to the overutilization of excess glucose.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

12.
Crude protein extract from a recently isolated ruminal bacterium identified as Selenomonas ruminantium subsp. lactilytica specifically cleaved DNA. This ability was due to the presence of two site-specific restriction endonucleases. Srl I, a Nae I schizomer, recognizes the 5'-GCCGGC-3' sequence. Srl II, a Nsi I schizomer, recognizes 5'-ATGCAT-3'.  相似文献   

13.
Dilute cultures of wild-type Escherichia coli K12 and of derivatives impaired in one or other Enzyme-II component of the glucose phosphotransferase system were grown in continuous culture under glucose limitation. Cells harvested from the chemostat took up [U-14C]glucose from 0.1 mM solutions at rates directly related to the rates at which those cells had grown; the activity of the phosphotransferase system in those cells, rendered permeable with optimal accounts of toluene, parallels the ability of the cells to take up glucose. The capacity of these systems was rate-limiting for growth under the negligibly low glucose concentration in the chemostat, but was adequate to account for the stimulation of respiration observed when the cells were presented suddenly with excess glucose.  相似文献   

14.
Abstract Selenomonas ruminantium (strain I10) isolated from the ovine rumen showed considerable morphological variation and lack of motility when cultured in a phosphate-limited chemostat in the presence of high levels of glucose (55.5 mM). Transmission electron microscopy showed that some of these variants were capable of producing daughter cells with a typical selenomonad morphology but lacking flagella.
The reduction of the levels of glucose (27.8 mM) in the media caused the numbers of cells exhibiting variation to decrease, with a corresponding increase in motile cells possessing a typical selenomonad morphology. The removal of trypticase from the media had no effect on the morphology or motility of the cells.
During the initial stages of changeover to reduced glucose levels variants could be found in the chemostat which were flagellate. The flagellae were consistently attached to a concave section of the cells.  相似文献   

15.
The pectinolytic enzyme of Selenomonas ruminantium   总被引:2,自引:0,他引:2  
A cell-bound pectinolytic enzyme was isolated from cells of Selenomonas ruminantium and purified about 360-fold. The optimum pH and temperature for enzyme activity was 7.0 and 40 degrees C. The enzyme degraded polymeric substrates by hydrolysis of digalacturonic acid units from the non-reducing end; the best substrate was nonagalacturonic acid. Unsaturated trigalacturonate was also degraded, but 30% slower than the saturated analogue. The enzyme was classified as a poly (1,4-alpha-D-galactosiduronate) digalacturono-hydrolase; EC 3.2.1.82. Another enzyme, hydrolysing digalacturonic acid to monomers, was also produced in a very small amount by this organism.  相似文献   

16.
The pectinolytic enzyme of Selenomonas ruminantium   总被引:1,自引:0,他引:1  
A cell-bound pectinolytic enzyme was isolated from cells of Selenomonas ruminantium and purified about 360-fold. The optimum pH and temperature for enzyme activity was 7.0 and 40°. The enzyme degraded polymeric substrates by hydrolysis of digalacturonic acid units from the non-reducing end; the best substrate was nona-galacturonic acid. Unsaturated trigalacturonate was also degraded, but 30% slower than the saturated analogue. The enzyme was classified as a poly (1,4-aP-D-galactosiduronate) digalacturono-hydrolase; EC 3.2.1.82. Another enzyme, hydrolysing digalacturonic acid to monomers, was also produced in a very small amount by this organism.  相似文献   

17.
The regulation of C1-metabolism in Xanthobacter strain 25a was studied during growth of the organism on acetate, formate and methanol in chemostat cultures. No activity of methanol dehydrogenase (MDH), formate dehydrogenase (FDS) or ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisC/O) could be detected in cells grown on acetate alone over a range of dilution rates tested. Addition of methanol or formate to the feed resulted in the immediate induction of MDH and FDH and complete utilization (D=0.10 h-1) of acetate and the C 1-substrates. The activities of these enzymes rapidly dropped at the higher growth rates, which suggests that their synthesis is further controlled via repression by heterotrophic substrates such as acetate. Synthesis of RuBisC/O already occurred at low methanol concentrations in the feed, resulting in additive growth yields on acetate/methanol mixtures. The energy generated in the oxidation of formate initially allowed an increased assimilation of acetate (and a decreased dissimilation), resulting in enhanced growth yields on the mixture. RuBisC/O activity could only be detected at the higher formate/acetate ratios in the feed. The data suggest that synthesis of RuBisC/O and CO2 fixation via the Calvin cycle in Xanthobacter strain 25 a is controlled via a (de)repression mechanism, as is the case in other facultatively autotrophic bacteria. Autotrophic CO2 fixation only occurs under conditions with a diminished supply of heterotrophic carbon sources and a sufficiently high availability of suitable energy sources. The latter point is further supported by the clearly more pronounced derepressing effect exerted by methanol compared to formate.Abbreviations FDH formate dehydrogenase - FBPase fructose-1,6-bisphosphatase - ICDH isocitrate dehydrogenase - MDH methanol dehydrogenase - PQQ pyrrolo quinoline quinone - PRK phosphoribulokinase - RuBisC/O ribulose-1,5-bisphosphate carboxylase/oxygenase - RuMP ribulose monophosphate - TCA tricarboxylic acid cycle  相似文献   

18.
Cadaverine was found to exist as a component of cell wall peptidoglycan of Selenomonas ruminantium, a strictly anaerobic bacterium. [14C]cadaverine added to the growth medium was incorporated into the cells, and about 70% of the total radioactivity incorporated was found in the peptidoglycan fraction. When the [14C]cadaverine-labeled peptidoglycan preparation was acid hydrolyzed, all of the 14C counts were recovered as cadaverine. The [14C]cadaverine-labeled peptidoglycan preparation was digested with lysozyme into three small fragments which were radioactive and were positive in ninhydrin reaction. One major spot, a compound of the fragments, was composed of alanine, glutamic acid, diaminopimelic acid, cadaverine, muramic acid, and glucosamine. One of the two amino groups of cadaverine was covalently linked to the peptidoglycan, and the other was free. The chemical composition of the peptidoglycan preparation of this strain was determined to be as follows: L-alanine-D-alanine-D-glutamic acid-meso-diaminopimelic acid-cadaverine-muramic acid-glucosamine (1.0:1.0:1.0:1.0:1.1:0.9:1.0).  相似文献   

19.
S illey , P. & A rmstrong , D.G. 1984. Changes in metabolism and cell size of the anaerobic bacterium Selenomonas ruminantium 0078A at the onset of growth in continuous culture. Journal of Applied Bacteriology 56 , 487–492.
Initial metabolism of Selenomonas ruminantium 0078A in continuous culture was characterized by a high lactate and low volatile fatty acid production; this was associated with poor growth as determined by bacterial dry weight production, yet individual cells were considerably larger than those of the inoculum. Biomass production increased, cell size decreased and the fermentation pattern reverted to the characteristic low lactate and high volatile fatty acid production after approximately 90 h growth.  相似文献   

20.
Selenomonas ruminantium was found to possess two pathways for NH4+ assimilation that resulted in net glutamate synthesis. One pathway fixed NH4+ through the action of an NADPH-linked glutamate dehydrogenase (GDH). Maximal GDH activity required KCl (about 0.48 M), but a variety of monovalent salts could replace KCl. Complete substrate saturation of the enzyme by NH4+ did not occur, and apparent Km values of 6.7 and 23 mM were estimated. Also, an NADH-linked GDH activity was observed but was not stimulated by KCl. Cells grown in media containing non-growth-rate-limiting concentrations of NH4+ had the highest levels of GDH activity. The second pathway fixed NH4+ into the amide of glutamine by an ATP-dependent glutamine synthetase (GS). The GS did not display gamma-glutamyl transferase activity, and no evidence for an adenylylation/deadenylylation control mechanism was detected. GS activity was highest in cells grown under nitrogen limitation. Net glutamate synthesis from glutamine was effected by glutamate synthase activity (GOGAT). The GOGAT activity was reductant dependent, and maximal activity occurred with dithionite-reduced methyl viologen as the source of electrons, although NADPH or NADH could partially replace this artificial donor system. Flavin adenine dinucleotide, flavin mononucleotide, or ferredoxin could not replace methyl viologen. GOGAT activity was maximal in cells grown with NH4+ as sole nitrogen source and decreased in media containing Casamino Acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号