首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At sub-bactericidal concentrations of hydrogen peroxide, Mycobacterium tuberculosis was killed by hydrogen peroxide/peroxidase/halide microbicidal systems. The halide cofactor could be either iodide or, with much lower efficiency, chloride. Omission of any one of the reactants eliminated the tuberculocidal effect. Differences in susceptibility between different strains of M. tuberculosis did not correlate with virulence differences. The observations are discussed in the context of host defence mechanisms against tuberculosis.  相似文献   

2.
Pancreatic beta cells are sensitive to reactive oxygen species and this may play an important role in type 1 diabetes and during transplantation. Beta cells contain low levels of enzyme systems that protect against reactive oxygen species. The weakest link in their protection system is a deficiency in the ability to detoxify hydrogen peroxide by the enzymes glutathione peroxidase and catalase. We hypothesize that the deficit in the ability to dispose of reactive oxygen species is responsible for the unusual sensitivity of beta cells and that increasing protection will result in more resistant beta cells. To test these hypotheses we have produced transgenic mice with increased beta cell levels of catalase. Seven lines of catalase transgenic mice were produced using the insulin promoter to direct pancreatic beta cell specific expression. Catalase activity in islets from these mice was increased by as much as 50-fold. Northern blot analysis of several tissues indicated that overexpression was specific to the pancreatic islet. Catalase overexpression had no detrimental effects on islet function. To test whether increased catalase activity could protect the transgenic islets we exposed them to hydrogen peroxide, streptozocin, and interleukin-1beta. Fifty-fold overexpression of catalase produced marked protection of islet insulin secretion against hydrogen peroxide and significantly reduced the diabetogenic effect of streptozocin in vivo. However, catalase overexpression did not provide protection against interleukin-1beta toxicity and did not alter the effects of syngeneic and allogenic transplantation on islet insulin content. Our results indicate that in the pancreatic beta cell overexpression of catalase is protective against some beta cell toxins and is compatible with normal function.  相似文献   

3.
The enzymes of hydrogen peroxide metabolism have been investigated in the cestodes H. diminuta and M. expansa. Neither catalase, lipoxygenase, glutathione peroxidase, NADH peroxidase nor NADPH peroxidase could be detected in homogenates of either species. However, both H. diminuta and M. expansa possessed a peroxidase which had a high affinity for reduced cytochrome c. The peroxidase was characterized by substrate and inhibitor studies and cell fractionation showed the enzyme to be located in the mitochondrial membrane fraction. The peroxidase could act as a substitute for catalase, by destroying metabolic hydrogen peroxide. Appreciable superoxide dismutase activity was found in M. expansa and H. diminuta and it is possible that this enzyme is the source of helminth hydrogen peroxide.  相似文献   

4.
The azidyl radical is formed during the oxidation of sodium azide by the catalase/hydrogen peroxide system, as detected by the ESR spin-trapping technique. The oxidation of azide by horseradish peroxidase, chloroperoxidase, lactoperoxidase, and myeloperoxidase also forms azidyl radical. It is suggested that the evolution of nitrogen gas and nitrogen oxides reported in the azide/catalase/hydrogen peroxide system results from reactions of the azidyl radical. The azide/horseradish peroxidase/hydrogen peroxide system consumes oxygen, and this oxygen uptake is inhibited by the spin trap 5,5-dimethyl-1-pyrroline-N-oxide, presumably due to the competition with oxygen for the azidyl radical. Although azide is used routinely as an inhibitor of myeloperoxidase and catalase, some consideration should be given to the biochemical consequences of the formation of the highly reactive azidyl radical by the peroxidase activity of these enzymes.  相似文献   

5.
Peroxiredoxin 2 is a member of the mammalian peroxiredoxin family of thiol proteins that is important in antioxidant defense and redox signaling. We have examined its reactivity with various biological oxidants, in order to assess its ability to act as a direct physiological target for these species. Human erythrocyte peroxiredoxin 2 was oxidized stoichiometrically to its disulfide-bonded homodimer by hydrogen peroxide, as monitored electrophoretically under nonreducing conditions. The protein was highly susceptible to oxidation by adventitious peroxide, which could be prevented by treating buffers with low concentrations of catalase. However, this did not protect peroxiredoxin 2 against oxidation by added H(2)O(2). Experiments measuring inhibition of dimerization indicated that at pH 7.4 catalase and peroxiredoxin 2 react with hydrogen peroxide at comparable rates. A rate constant of 1.3 x 10(7) M(-1) s(-1) for the peroxiredoxin reaction was obtained from competition kinetic studies with horseradish peroxidase. This is 100-fold faster than is generally assumed. It is sufficiently high for peroxiredoxin to be a favored cellular target for hydrogen peroxide, even in competition with catalase or glutathione peroxidase. Reactions of t-butyl and cumene hydroperoxides with peroxiredoxin were also fast, but amino acid chloramines reacted much more slowly. This contrasts with other thiol compounds that react many times faster with chloramines than with hydrogen peroxide. The alkylating agent iodoacetamide also reacted extremely slowly with peroxiredoxin 2. These results demonstrate that peroxiredoxin 2 has a tertiary structure that facilitates reaction of the active site thiol with hydrogen peroxide while restricting its reactivity with other thiol reagents.  相似文献   

6.
Enterococcus faecalis exhibits high resistance to oxidative stress. Several enzymes are responsible for this trait. The role of alkyl hydroperoxide reductase (Ahp), thiol peroxidase (Tpx), and NADH peroxidase (Npr) in oxidative stress defense was recently characterized. Enterococcus faecalis, in contrast to many other streptococci, contains a catalase (KatA), but this enzyme can only be formed when the bacterium is supplied with heme. We have used this heme dependency of catalase activity and mutants deficient in KatA and Npr to investigate the role of the catalase in resistance against exogenous and endogenous hydrogen peroxide stress. The results demonstrate that in the presence of environmental heme catalase contributes to the protection against toxic effects of hydrogen peroxide.  相似文献   

7.
Mammalian hibernators are considered a natural model for resistance to ischemia-reperfusion injuries, and protective mechanisms against oxidative stress evoked by repeated hibernation-arousal cycles in these animals are increasingly the focus of experimental investigation. Here we show that extracellular catalase activity provides protection against oxidative stress during arousal from hibernation in Syrian hamster. To examine the serum antioxidant defense system, we first assessed the hibernation-arousal state-dependent change in serum attenuation of cytotoxicity induced by hydrogen peroxide. Serum obtained from hamsters during arousal from hibernation at a rectal temperature of 32 degrees C, concomitant with the period of increased oxidative stress, attenuated the cytotoxicity four-fold more effectively than serum from cenothermic control hamsters. Serum catalase activity significantly increased during arousal, whereas glutathione peroxidase activity decreased by 50%, compared with cenothermic controls. The cytoprotective effect of purified catalase at the concentration found in serum was also confirmed in a hydrogen peroxide-induced cytotoxicity model. Moreover, inhibition of catalase by aminotriazole led to an 80% loss of serum hydrogen peroxide scavenging activity. These results suggest that extracellular catalase is effective for protecting hibernators from oxidative stress evoked by arousal from hibernation.  相似文献   

8.
Catalase-peroxidases (KatG) produced by Burkholderia pseudomallei, Escherichia coli, and Mycobacterium tuberculosis catalyze the oxidation of NADH to form NAD+ and either H2O2 or superoxide radical depending on pH. The NADH oxidase reaction requires molecular oxygen, does not require hydrogen peroxide, is not inhibited by superoxide dismutase or catalase, and has a pH optimum of 8.75, clearly differentiating it from the peroxidase and catalase reactions with pH optima of 5.5 and 6.5, respectively, and from the NADH peroxidase-oxidase reaction of horseradish peroxidase. B. pseudomallei KatG has a relatively high affinity for NADH (Km=12 microm), but the oxidase reaction is slow (kcat=0.54 min(-1)) compared with the peroxidase and catalase reactions. The catalase-peroxidases also catalyze the hydrazinolysis of isonicotinic acid hydrazide (INH) in an oxygen- and H2O2-independent reaction, and KatG-dependent radical generation from a mixture of NADH and INH is two to three times faster than the combined rates of separate reactions with NADH and INH alone. The major products from the coupled reaction, identified by high pressure liquid chromatography fractionation and mass spectrometry, are NAD+ and isonicotinoyl-NAD, the activated form of isoniazid that inhibits mycolic acid synthesis in M. tuberculosis. Isonicotinoyl-NAD synthesis from a mixture of NAD+ and INH is KatG-dependent and is activated by manganese ion. M. tuberculosis KatG catalyzes isonicotinoyl-NAD formation from NAD+ and INH more efficiently than B. pseudomallei KatG.  相似文献   

9.
Mouse renal carcinoma (renca) cells growing exponentially in foetal bovine serum (1%) supplemented with selenium (1 microM, sodium selenite) were exposed to oxidative insult. It was found that glutathione peroxidase activity increased (44%), while the activities of catalase, glutathione disulfide reductase, and level of total glutathione did not change due to selenium supplementation. Selenium supplementation made renca cells susceptible to tert-butylhydroperoxide induced cell death, while it did not affect the viability when the cells were exposed to hydrogen peroxide. It suggested that the contribution of glutathione peroxidase in antioxidant defense mechanism of renca cells was possibly not crucial and the function of catalase might be important especially against hydrogen peroxide.  相似文献   

10.
Various deoxyribonucleic acid repair-deficient strains of Escherichia coli K-12 were exposed to hydrogen peroxide under anaerobic conling of the strains was determined. The level of catalase, peroxidase, and superoxide dismutase in cell-free extracts of the strains as well as the capacity of intact cells to decompose hydrogen peroxide were assayed, recA strains were more rapidly killed than other strains with deoxyribonucleic acid repair deficiencies. There was no correlation between the killing rate of the strains and the capacity of intact cells to decompose hydrogen peroxide or the level of catalase and superoxide dismutase in cell-free extracts. The level of peroxidase in cell-free extract was too low to be determined.  相似文献   

11.
Activity of redox-enzymes of AA system and of catalase was measured in two near-isogenic tomato lines, respectively resistant and susceptible to Tobacco Mosaic Virus infection. AFR reductase, DHA reductase and catalase showed quite similar activities in both lines, whereas AA peroxidase activity in resistant plants was 75% higher than in susceptible ones, with Km values about 4-fold lower. These data suggest that hydrogen peroxide scavenging operated by AA peroxidase could play an important role in the development of biological defence mechanisms against pathogens.  相似文献   

12.
W. Kaiser 《BBA》1976,440(3):476-482
Low concentrations of hydrogen peroxide strongly inhibit CO2 fixation of isolated intact chloroplasts (50% inhibition at 10−5 M hydrogen peroxide). Addition of catalase to a suspension of intact chloroplasts stimulates CO2 fixation 2–6 fold, indicating that this process is partially inhibited by endogenous hydrogen peroxide formed in a Mehler reaction.

The rate of CO2 fixation is strongly increased by addition of Calvin cycle intermediates if the catalase activity of the preparation is low. However, at high catalase activity addition of Calvin cycle intermediates remains without effect. Obviously the hydrogen peroxide formed at low catalase activity leads to a loss of Calvin cycle substrates which reduces the rate of CO2 fixation.

3-Phosphoglycerate-dependent O2-evolution is not influenced by hydrogen peroxide at a concentration (5 · 10−4 M) which inhibits CO2 fixation almost completely. Therefore the inhibition site of hydrogen peroxide cannot be at the step of 3-phosphoglycerate reduction. Dark CO2 fixation of lysed chloroplasts in a hypotonic medium is not or only slightly inhibited by hydrogen peroxide (2.5 · 10−4 M), if ribulose-1,5-diphosphate, ribose 5-phosphate or xylulose 5-phosphate were added as substrates. However, there is a strong inhibition of CO2 fixation by hydrogen peroxide, if fructose 6-phosphate together with triose phosphate are used as substrates. This indicates that hydrogen peroxide interrupts the Calvin cycle at the transketolase step, leading to a reduced supply of the CO2-acceptor ribulose 1,5-diphosphate.  相似文献   


13.
A carbon paste electrode containing ruthenium(IV) oxide as a modifier was tested as an effective hydrogen peroxide amperometric sensor in bulk measurements (hydrodynamic amperometry). Factors that influence its overall analytical perform ance, such as pH and the applied potential, were examined. The RuO2-modified electrode displayed high sensitivity towards hydrogen peroxide, with detection limits as low as 0.02 mm at pH 7.4 and 0.007 mM at pH 9.0. The method was applied for monitoring the decomposition of hydrogen peroxide (by catalase) in phosphate buffer of pH 7.4. The relative response of the electrode towards ascorbic acid was assessed and it was found that the selectivity of the RuO2-modified electrode towards hydrogen peroxide over ascorbic acid could be significantly improved by electro-polymerizing m-phenylenediamine on its surface prior to measurements. The RuO2-modified electrode was used for the kinetic (fixed time) determination of catalase activity in the range of 4-40 U/mL (detection limit 1.2 U/mL). The method was applied to the determination of catalase-like activity in various plant materials (recov-ery ranged from 93 to 101%, detection limit 480 U/100 g).  相似文献   

14.
P S Hoffman  L Pine    S Bell 《Applied microbiology》1983,45(3):784-791
The difficulties associated with the growth of Legionella species in common laboratory media may be due to the sensitivity of these organisms to low levels of hydrogen peroxide and superoxide radicals. Exposure of yeast extract (YE) broth to fluorescent light generated superoxide radicals (3 microM/h) and hydrogen peroxide (16 microM/h). Autoclaved YE medium was more prone to photochemical oxidation than YE medium sterilized by filtration. Activated charcoals and, to a lesser extent, graphite, but not starch, prevented photochemical oxidation of YE medium, decomposed hydrogen peroxide and superoxide radicals, and prevented light-accelerated autooxidation of cysteine. Also, suspensions of charcoal in phosphate buffer and in charcoal yeast extract medium readily decomposed exogenous peroxide (17 and 23 nmol/ml per min, respectively). Combinations of bovine superoxide dismutase and catalase also decreased the rate of photooxidation of YE medium. Medium protected from light did not accumulate appreciable levels of hydrogen peroxide, and autoclaved YE medium protected from light supported good growth of Legionella micdadei. Various species of Legionella (10(4) cells per ml) exhibited sensitivity to relatively low levels of hydrogen peroxide (26.5 microM) in challenge experiments. The level of hydrogen peroxide that accumulated in YE medium over a period of several hours (greater than 50 microM) was in excess of the level tolerated by Legionella pneumophila, which contained no measurable catalase activity. Strains of L. micdadei, Legionella dumoffi, and Legionella bozmanii contained this enzyme, but the presence of catalase did not appear to confer appreciable tolerance to exogenously generated hydrogen peroxide.  相似文献   

15.
The difficulties associated with the growth of Legionella species in common laboratory media may be due to the sensitivity of these organisms to low levels of hydrogen peroxide and superoxide radicals. Exposure of yeast extract (YE) broth to fluorescent light generated superoxide radicals (3 microM/h) and hydrogen peroxide (16 microM/h). Autoclaved YE medium was more prone to photochemical oxidation than YE medium sterilized by filtration. Activated charcoals and, to a lesser extent, graphite, but not starch, prevented photochemical oxidation of YE medium, decomposed hydrogen peroxide and superoxide radicals, and prevented light-accelerated autooxidation of cysteine. Also, suspensions of charcoal in phosphate buffer and in charcoal yeast extract medium readily decomposed exogenous peroxide (17 and 23 nmol/ml per min, respectively). Combinations of bovine superoxide dismutase and catalase also decreased the rate of photooxidation of YE medium. Medium protected from light did not accumulate appreciable levels of hydrogen peroxide, and autoclaved YE medium protected from light supported good growth of Legionella micdadei. Various species of Legionella (10(4) cells per ml) exhibited sensitivity to relatively low levels of hydrogen peroxide (26.5 microM) in challenge experiments. The level of hydrogen peroxide that accumulated in YE medium over a period of several hours (greater than 50 microM) was in excess of the level tolerated by Legionella pneumophila, which contained no measurable catalase activity. Strains of L. micdadei, Legionella dumoffi, and Legionella bozmanii contained this enzyme, but the presence of catalase did not appear to confer appreciable tolerance to exogenously generated hydrogen peroxide.  相似文献   

16.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

17.
18.
Catalase is a highly conserved heme-containing antioxidant enzyme known for its ability to degrade hydrogen peroxide into water and oxygen. In low concentrations of hydrogen peroxide, the enzyme also exhibits peroxidase activity. We report that mammalian catalase also possesses oxidase activity. This activity, which is detected in purified catalases, cell lysates, and intact cells, requires oxygen and utilizes electron donor substrates in the absence of hydrogen peroxide or any added cofactors. Using purified bovine catalase and 10-acetyl-3,7-dihydroxyphenoxazine as the substrate, the oxidase activity was found to be temperature-dependent and displays a pH optimum of 7-9. The Km for the substrate is 2.4 x 10(-4) m, and Vmax is 4.7 x 10(-5) m/s. Endogenous substrates, including the tryptophan precursor indole, the neurotransmitter precursor beta-phenylethylamine, and a variety of peroxidase and laccase substrates, as well as carcinogenic benzidines, were found to be oxidized by catalase or to inhibit this activity. Several dietary plant micronutrients that inhibit carcinogenesis, including indole-3-carbinol, indole-3-carboxaldehyde, ferulic acid, vanillic acid, and epigallocatechin-3-gallate, were effective inhibitors of the activity of catalase oxidase. Difference spectroscopy revealed that catalase oxidase/substrate interactions involve the heme-iron; the resulting spectra show time-dependent decreases in the ferric heme of the enzyme with corresponding increases in the formation of an oxyferryl intermediate, potentially reflecting a compound II-like intermediate. These data suggest a mechanism of oxidase activity involving the formation of an oxygen-bound, substrate-facilitated reductive intermediate. Our results describe a novel function for catalase potentially important in metabolism of endogenous substrates and in the action of carcinogens and chemopreventative agents.  相似文献   

19.
Cold-shocked Salmonella typhimurium displayed minimal medium recovery (MMR), viable counts on M9 minimal agar being much higher than those on tryptone soya yeast extract agar (TSYA). The addition of catalase to TSYA restored counts to the level found on M9 agar. Peroxide concentrations between 12 and 30 μmol/1 were measured in TSYB but none was detected in M9 medium. Cold-shocked cells were sensitive to reagent hydrogen peroxide at a concentration similar to that found in TSYB. The minimal medium recovery phenomenon of cold-shocked cells is thus a manifestation of peroxide sensitivity. Changing the composition of growth media affected both cellular catalase activity and the magnitude of the MMR effect but the two properties were not directly related. Factors additional to cellular catalase activity must therefore affect susceptibility to peroxide following cold shock. Muta tional loss of catalase, exonuclease III or recA -dependent DNA repair functions all increased the sensitivity of cold-shocked Escherichia coli to the inhibitory effects of peroxide present in rich medium. The peroxide resistant fraction of a cold-shocked population of Salm. typhimurium (i.e. those cells able to grow on TSYA) was more resistant to gamma radiation than the population as a whole. Cold shock thus sensitizes cells to more than one form of oxidative stress. Prior exposure of growing cells to 30 μ mol/1 hydrogen peroxide abolished their sensitivity to rich medium following cold shock implying that Salm. typhimurium contains an inducible system protecting against oxidative stress.  相似文献   

20.
Cold-shocked Salmonella typhimurium displayed minimal medium recovery (MMR), viable counts on M9 minimal agar being much higher than those on tryptone soya yeast extract agar (TSYA). The addition of catalase to TSYA restored counts to the level found on M9 agar. Peroxide concentrations between 12 and 30 mumol/l were measured in TSYB but none was detected in M9 medium. Cold-shocked cells were sensitive to reagent hydrogen peroxide at a concentration similar to that found in TSYB. The minimal medium recovery phenomenon of cold-shocked cells is thus a manifestation of peroxide sensitivity. Changing the composition of growth media affected both cellular catalase activity and the magnitude of the MMR effect but the two properties were not directly related. Factors additional to cellular catalase activity must therefore affect susceptibility to peroxide following cold shock. Mutational loss of catalase, exonuclease III or recA-dependent DNA repair functions all increased the sensitivity of cold-shocked Escherichia coli to the inhibitory effects of peroxide present in rich medium. The peroxide resistant fraction of a cold-shocked population of Salm. typhimurium (i.e. those cells able to grow on TSYA) was more resistant to gamma radiation than the population as a whole. Cold shock thus sensitizes cells to more than one form of oxidative stress. Prior exposure of growing cells to 30 mumol/l hydrogen peroxide abolished their sensitivity to rich medium following cold shock implying that Salm. typhimurium contains an inducible system protecting against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号