首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the histology of canine teeth in extant hominoids and provided a comparative database on several aspects of canine development. The resultant data augment the known pattern of differences in aspects of tooth crown formation among great apes and more importantly, enable us to determine the underlying developmental mechanisms responsible for canine dimorphism in them. We sectioned and analyzed a large sample (n = 108) of reliably-sexed great ape mandibular canines according to standard histological techniques. Using information from long- and short-period incremental markings in teeth, we recorded measurements of daily secretion rates, periodicity and linear enamel thickness for specimens of Pan troglodytes, Gorilla gorilla, Pongo pygmaeus and Homo sapiens. Modal values of periodicities in males and females, respectively, are: Pan 7/7; Gorilla 9/10; Pongo 10/10; and Homo 8/8. Secretion rates increase from the inner to the outer region of the enamel cap and decrease from the cuspal towards the cervical margin of the canine crown in all great ape species. Female hominoids tend to possess significantly thicker enamel than their male counterparts, which is almost certainly related to the presence of faster daily secretion rates near the enamel-dentine junction, especially in Gorilla and Pongo. Taken together, these results indicate that sexual differences in canine development are most apparent in the earlier stages of canine crown formation, while interspecific differences are most apparent in the outer crown region. When combined with results on the rate and duration of canine crown formation, the results provide essential background work for larger projects aimed at understanding the developmental basis of canine dimorphism in extant and extinct large-bodied hominoids and eventually in early hominins.  相似文献   

2.
While a number of studies have documented the mandibular variations in hominoids, few focused on evaluating the variation of the whole outline of this structure. Using an efficient morphometrical approach, i.e. elliptical Fourier analysis, mandibular outlines in lateral view from 578 adult hominoids representing the genera Hylobates, Pongo, Gorilla, Pan, and Homo were quantified and compared. This study confirms that elliptical Fourier analysis provides an accurate characterization of the shape of the mandibular profile. Differences in mandibular shape between hominoid genera, species, subspecies, and to a lesser extent between sexes were demonstrated. Mandibles in great apes and hylobatids subspecies were generally less distinct from each other than were species. However, the magnitudes of differences among subspecies of Gorilla and Pongo approached or exceeded those between Pan troglodytes and P. paniscus. The powerful discrimination between taxa from the genus down to subspecific level associated to the relatively low level of intrageneric mandibular polymorphism in great apes provides strong evidences in support of the taxonomic utility of the shape of the mandibular profile in hominoids. In addition, morphological affinities between Pongo and Pan and the clear distinction between Homo and Pan suggest that the mandibular outline is a poor estimate of phylogenetic relationships in great apes and humans. The sexual dimorphism in mandibular shape exhibits two patterns of expression: a high degree of dimorphism in Gorilla, Pongo, and H. s. syndactylus and a relatively low one in modern humans and Pan. Besides, degree of mandibular shape dimorphism can vary considerably among closely related subspecies as observed in gorillas, arguing against the use of mandibular shape dimorphism patterns as characters in phylogenetic analyses. However, the quantification of the mandibular shape and of the variations among hominoids provides an interesting comparative framework that is likely to supply further arguments for a better understanding of the patterns of differentiation between living hominoids.  相似文献   

3.
The great apes and gibbons are characterized by extensive variation in degree of body size and cranial dimorphism, but although some studies have investigated how sexual dimorphism in body mass is attained in these species, for the majority of taxa concerned, no corresponding work has explored the full extent of how sexual dimorphism is attained in the facial skeleton. In addition, most studies of sexual dimorphism combine dentally mature individuals into a single “adult” category, thereby assuming that no substantial changes in size or dimorphism take place after dental maturity. We investigated degree and pattern of male and female facial growth in Pan troglodytes troglodytes, Pan paniscus, Gorilla gorilla gorilla, Pongo pygmaeus, and Hylobates lar after dental maturity through cross-sectional analyses of linear measurements and geometric mean values of the facial skeleton and age-ranking of individuals based on molar occlusal wear. Results show that overall facial size continues to increase after dental maturity is reached in males and females of Gorilla gorilla gorilla and Pongo pygmaeus, as well as in the females of Hylobates lar. In male Pongo pygmaeus, adult growth patterns imply the presence of a secondary growth spurt in craniofacial dimensions. There is suggestive evidence of growth beyond dental maturity in the females of Pan troglodytes troglodytes and Pan paniscus, but not in the males of those species. The results show the presence of statistically significant facial size dimorphism in young adults of Pan paniscus and Hylobates lar, and of near statistical significance in Pan troglodytes troglodytes, but not in older adults of those species; adults of Gorilla gorilla gorilla and Pongo pygmaeus are sexually dimorphic at all ages after dental maturity. The presence of sex-specific growth patterns in these hominoid taxa indicates a complex relationship between socioecological selective pressures and growth of the facial skeleton.  相似文献   

4.
Fieldwork in the Yuanmou Basin of southern China has uncovered a large assemblage of late Miocene hominoid fossils assigned to Lufengpithecus hudienensis. Two mandibular first molars from this species were made available for histological analysis as part of a larger ongoing study on the ontogeny of dental development in Miocene to Recent hominoids. Results are compared with published and unpublished data on tooth growth in a wide range of extant and extinct hominoids. The Yuanmou molars are smaller than those of Lufengpithecus lufengensis and have markedly shorter crown formation times, overlapping slightly with Pan, but most similar to Proconsul and Dryopithecus. In other aspects of molar development (including enamel extension rates and enamel thickness), L. hudienensis shows similarities with all extant hominoids, in particular, Pongo. Ultimately, charting the ontogeny of molar crown formation may help shed light on the relationship of Lufengpithecus hudienensis to orangutans, and other Miocene to Recent hominoids.  相似文献   

5.
The aim of this review is to bring together data that link tooth morphology with tooth function and tooth growth: We aim to show how the microanatomy of hominoid teeth is providing evidence about rates of tooth growth that are likely to be a consequence of both masticatory strategy and social behaviour. First, we present data about incisor and molar tooth wear in wild short chimpanzees that demonstrate how crown heights are likely to be related to relative tooth use in a broad sense. Following this we review recent studies that describe the microanatomy of hominoid tooth enamel and show how these studies are providing evidence about tooth crown formation times in hominoids, as well as improving estimates for the age at death of certain juvenile fossil hominids. Next, we outline what is known about the mechanisms of tooth growth in the sexually dimorphic canine teeth of chimpanzees and compare these patterns of growth with tooth growth patterns in the canines of three fossil hominids from Laetoli, Tanzania. Finally, we discuss how selection pressures that operate to increase or reduce the size of anterior teeth interact with jaw size. We argue that the space available to grow developing teeth in the mandibles of juvenile hominoids is determined by the growth patterns of the mandibles, which in turn reflect masticatory strategy. The consequences of selection pressure to grow large or small anterior teeth are likely to be reflected in the times at which these teeth are able to emerge into occlusion.  相似文献   

6.
Two mandibular fragments with associated milk teeth assigned to the late Miocene hominoid primate Ouranopithecus macedoniensis are analyzed. The fossils, which belong to a single individual, were found in the Vallesian locality of "Ravin de la Pluie" of the Axios Valley (Macedonia, Greece). The material is described here and compared with extant and extinct hominoids, allowing assessment of the evolutionary trends in the deciduous lower dentition within the Hominoidea. Hylobatids represent the more primitive pattern. Gorilla is slightly more derived than hylobatids, but less derived than Pongo and Pan, the latter being the most derived. With relatively smaller deciduous canines and more molarized deciduous premolars, Ouranopithecus is more derived than both Pan and Gorilla. Among the fossil hominoids, Proconsul, representing the primitive condition, has a very simple dp(3)and a dp(4)that has a trigonid that is taller than the talonid and which lacks a hypoconulid. Griphopithecus is more derived than Proconsul in having a dp(4) with a lower trigonid, a hypoconulid, and a less oblique cristid obliqua. Australopithecus and Paranthropus possess a similar morphology to that of Homo, while Ardipithecus appears to be more primitive than the latter genera. Ouranopithecus has a more derived lower milk dentition than Proconsul and Griphopithecus, but less derived than Australopithecus and Paranthropus. The comparison of the lower milk dentition of Ouranopithecus confirms our previous conclusions suggesting that this fossil hominoid shares derived characters with Australopithecus and Homo.  相似文献   

7.
During the past decade, studies of enamel development have provided a broad temporal and geographic perspective on evolutionary developmental biology in Miocene hominoids. Here we report some of the first data for molar crown development in one hominoid genus, Sivapithecus. The data are compared to a range of extant and extinct hominoids. Crown formation times (CFTs), daily rates of enamel secretion (DSR), Retzius line number and periodicity, and relative enamel thickness (RET) were calculated in a mandibular first molar of Sivapithecus parvada and a maxillary first molar of Sivapithecus indicus from the Siwalik sequence of Pakistan. A CFT of 2.40 years for the protoconid of S. parvada and 2.25 years for the protocone of S. indicus lie within the range of first molar (M1) formation times for the majority of Miocene hominoids (1.96-2.40 years, excluding Proconsul heseloni), and are similar to an M(1) from Gorilla (2.31 years) and M(1)s from Pan (2.22-2.39 years). This is unlike the longer CFTs in modern humans, which appear to be linked with their extended growth period. In contrast to extant great apes and humans, daily rates of enamel secretion are rapid in the Sivapithecus M1s during the early stages of growth, which seems to be a common pattern for most Miocene apes. The rapid accumulation of cuspal enamel in the Sivapithecus molars produced thicker enamel than either Pan or Gorilla in a comparable period of time. Future studies on larger samples of living and fossil hominoids are needed to clarify trends in crown development, which may be better understood in the context of life history strategies coupled with good data on body mass and brain size.  相似文献   

8.
One of the few uncontested viewpoints in studies of enamel thickness is that the molars of the African apes, Pan and Gorilla, possess "thin" enamel, while Pongo and modern humans possess varying degrees of "thick" enamel, even when interspecific differences in overall body or tooth size are taken into account. Such studies focus primarily on estimates of the total volume of enamel relative to tooth size (i.e., "relative" enamel thickness), as this is thought to bear directly on questions concerning dietary proclivities and phylogenetic relationships. Only recently have studies shifted focus to examining differences in the distribution of enamel across the tooth crown, i.e., the patterning of enamel thickness, as this may contribute to more refined models of tooth function and dietary adaptations in extant hominoids. Additionally, this feature has been suggested to be a reliable indicator of taxonomic affinity in early hominins, though no study has specifically addressed whether species-specific patterns exist among known phena. The aims of this paper were to test more explicitly whether enamel thickness patterning provides valuable taxonomic, functional, and/or phylogenetic information for maxillary molars of large-bodied extant hominoids. A series of seven linear enamel thickness measurements was recorded in the plane of the mesial cusps in cross sections of a total of 62 maxillary molars of P. troglodytes, G. gorilla, P. pygmaeus, and H. sapiens to estimate the patterning of enamel thickness distribution. Results from a discriminant function analysis reveal that, overall, this trait reclassifies extant hominoid maxillary molars with 90% accuracy: 100% of extant Homo, 75. 0% of Pongo, 83.3% of Pan, and 66.7% of Gorilla are reclassified correctly, indicating that this feature possesses a strong taxonomic signal. Furthermore, differences in the structure of the enamel cap are evident among hominoids: modern humans differ from Pongo in possessing proportionally thicker enamel in areas of the crown associated with shearing activity; Pan molars are better designed than those of Gorilla for generating a greater component of crushing/grinding loads. Thus, African ape molars are structurally dissimilar, even though they are both considered to belong to a morphologically homogeneous "thin-enameled" group. Simple developmental mechanisms can be invoked to explain the sometimes subtle differences in the achievement of adult morphology. For instance, human and orangutan molar cusps possess a similar degree of enamel thickness, but the possibility exists that despite similarities in morphology, each species follows a different sequence of secretory activity of enamel to achieve the final, albeit similar, degree of enamel thickness. Such a finding would suggest that the shared possession of "thick" or "thin" enamel among species may be phylogenetically uninformative, as it would not represent a developmental synapomorphy.  相似文献   

9.
The fossil sample attributed to the late Miocene hominoid taxon Ouranopithecus macedoniensis is characterized by a high degree of dental metric variation. As a result, some researchers support a multiple-species taxonomy for this sample. Other researchers do not think that the sample variation is too great to be accommodated within one species. This study examines variation and sexual dimorphism in mandibular canine and postcanine dental metrics of an Ouranopithecus sample. Bootstrapping (resampling with replacement) of extant hominoid dental metric data is performed to test the hypothesis that the coefficients of variation (CV) and the indices of sexual dimorphism (ISD) of the fossil sample are not significantly different from those of modern great apes. Variation and sexual dimorphism in Ouranopithecus M(1) dimensions were statistically different from those of all extant ape samples; however, most of the dental metrics of Ouranopithecus were neither more variable nor more sexually dimorphic than those of Gorilla and Pongo. Similarly high levels of mandibular molar variation are known to characterize other fossil hominoid species. The Ouranopithecus specimens are morphologically homogeneous and it is probable that all but one specimen included in this study are from a single population. It is unlikely that the sample includes specimens of two sympatric large-bodied hominoid species. For these reasons, a single-species hypothesis is not rejected for the Ouranopithecus macedoniensis material. Correlations between mandibular first molar tooth size dimorphism and body size dimorphism indicate that O. macedoniensis and other extinct hominoids were more sexually size dimorphic than any living great apes, which suggests that social behaviors and life history profiles of these species may have been different from those of living species.  相似文献   

10.
A systematic review of parasitological data pertaining to the phylogeny of hominoid primates revealed considerable internal consistency and congruence with non-parasitological data. Hylobatids are supported as the sister-group of Pongo + Pan + Gorilla , the 'Great Apes'. Within the Great Apes, Pan + Gorilla are sister taxa. Multiple analyses of presence/absence data place Homo with cercopithecids, probably an artefact of humans' widespread occurrence and polymorphic feeding and living habits. Explicit phylogenetic hypotheses are available for only two parasite groups. Hookworms of the genus Oesophagostomum subgenus Conoweberia place Homo as the sister-group of Pan + Gorilla , whereas pinworms of the genus Enterobius place Homo as the sister-group of Pongo + Pan + Gorilla . This disagreement among data sets with regards to the placement of Homo , combined with the complete agreement about the placement of the other hominoids, is consistent with uncertainties in current findings from other sets of data.  相似文献   

11.
Anthropoid primates are well known for their highly sexually dimorphic canine teeth, with males possessing canines that are up to 400% taller than those of females. Primate canine dimorphism has been extensively documented, with a consensus that large male primate canines serve as weapons for intrasexual competition, and some evidence that large female canines in some species may likewise function as weapons. However, apart from speculation that very tall male canines may be relatively weak and that seed predators have strong canines, the functional significance of primate canine shape has not been explored. Because carnivore canine shape and size are associated with killing style, this group provides a useful comparative baseline for primates. We evaluate primate maxillary canine tooth size, shape and relative bending strength against body size, skull size, and behavioral and demographic measures of male competition and sexual selection, and compare them to those of carnivores. We demonstrate that, relative to skull length and body mass, primate male canines are on average as large as or larger than those of similar sized carnivores. The range of primate female canine sizes embraces that of carnivores. Male and female primate canines are generally as strong as or stronger than those of carnivores. Although we find that seed-eating primates have relatively strong canines, we find no clear relationship between male primate canine strength and demographic or behavioral estimates of male competition or sexual selection, in spite of a strong relationship between these measures and canine crown height. This suggests either that most primate canines are selected to be very strong regardless of variation in behavior, or that primate canine shape is inherently strong enough to accommodate changes in crown height without compromising canine function.  相似文献   

12.
釉面横纹的数目可用于推断个体牙齿的牙冠形成时间,在生长发育研究中具有重要的意义。本研究运用数码体视显微镜和扫描电镜观察了云南石灰坝禄丰禄丰古猿(简称禄丰古猿)30枚齿冠完整的前部牙齿,包括上下颌中门齿6枚、侧门齿10枚和犬齿14枚。根据唇侧面釉面横纹计数的观察结果,分别以7天和9天芮氏线生长周期,估算各齿型的牙冠形成时间,结果显示:以生长周期7天计算,中门齿牙冠形成时间约为3.6-4.1年,侧门齿牙冠形成时间约为2.7-3.7年,犬齿牙冠形成时间约为4.2-7.0;以生长周期9天计算,中门齿牙冠形成时间约为4.4-5.2年,侧门齿牙冠形成时间约为3.4-4.7年,犬齿牙冠形成时间约为5.2-8.8年。为更深入地了解禄丰古猿牙冠形成时间在不同齿型及性别间足否存在明显差异,本文用SPSS软件对其进行显著性差异检验。采用小样本平均值的t值假设检验(置信区间为95%),结果如下:禄丰古猿前部牙齿的牙冠形成时间在各类牙齿的上下颌中不存在显著性差异;犬齿牙冠形成时间存在非常显著的性别差异,雄性牙冠形成时间明显长于雌性,侧门齿也存在显著的性别差异,而中门齿性别间则无显著性差异。此外对禄丰古猿中门齿,侧门齿和犬齿的牙冠形成时间进行单因素方差分析并两两对比,结果显示中门齿与侧门齿的牙冠形成时间不存在显著性差异,而犬齿与中门齿和侧门齿均存在显著性差异,犬齿牙冠形成时间明显长于门齿。同时也对禄丰古猿前部牙齿的牙冠形成时间与齿冠高进行相关性分析,其结果表明两者有显著的正相关性。将禄丰古猿与其他古猿和现生大猿、南方古猿以及人属成员进行对比,结果显示其前部牙齿牙冠形成时间长于原修康尔猿、南方古猿、傍人、人属成员,接近于蝴蝶禄丰古猿和大猩猩,而明显小于黑猩猩、华南化石猩猩及现生猩猩。  相似文献   

13.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Ground sections of incisors, canines, and molars were selected that showed clear incremental markings in root dentine. The sample comprised 98 Homo sapiens, 53 Pan troglodytes, and a more limited combined sample of 51 Gorilla and Pongo sections. Daily rates of root dentine formation, together with the orientation of incremental markings in roots close to the cement-dentine junction (CDJ), were used to calculate root extension rates for the first 10mm of root formed beyond the buccal enamel cervix. Modern human anterior tooth roots showed a more regular pattern of increase in root length than those in great apes. In Pan, root growth rose quickly to higher rates but then flattened off. The fastest extension rates in modern humans were in incisor roots (10-12 microm per day), followed by canines (8-9 microm per day). Extension rates in Pan rose to slightly greater values in canines ( approximately 12-14 microm per day) than in incisors ( approximately 10-11 microm per day). Molar tooth roots in both modern humans and great apes grew in a nonlinear manner. Peak rates in molars reduced from M1 to M3 (8, 7, and 6 microm per day, respectively). Like humans, root growth in Pan peaked earlier in M1s at rates of between 8 and 9 microm per day, and later in M3s at rates of 7 to 8 microm per day. The more limited data set for Gorilla and Pongo molars suggests that extension rates were generally higher than in Pan by approximately 1.0-1.5 microm per day. There were greater differences in peak extension rates, with Gorilla and Pongo extension rates being between 2.5 and 4.5 microm per day higher than those in Pan. These findings highlight for the first time that root growth rates differ between tooth types in both pattern and rate and between taxa. They provide the basis with which to explore further the potential comparative relationships between root growth, jaw growth, and the eruption process.  相似文献   

15.
Afropithecus turkanensis, a 17-17.5 million year old large-bodied hominoid from Kenya, has previously been reported to be the oldest known thick-enamelled Miocene ape. Most investigations of enamel thickness in Miocene apes have been limited to opportunistic or destructive studies of small samples. Recently, more comprehensive studies of enamel thickness and microstructure in Proconsul, Lufengpithecus, and Dryopithecus, as well as extant apes and fossil humans, have provided information on rates and patterns of dental development, including crown formation time, and have begun to provide a comparative context for interpretation of the evolution of these characters throughout the past 20 million years of hominoid evolution. In this study, enamel thickness and aspects of the enamel microstructure in two A. turkanensis second molars were quantified and provide insight into rates of enamel apposition, numbers of cells actively secreting enamel, and the time required to form regions of the crown. The average value for relative enamel thickness in the two molars is 21.4, which is a lower value than a previous analysis of this species, but which is still relatively thick compared to extant apes. This value is similar to those of several Miocene hominoids, a fossil hominid, and modern humans. Certain aspects of the enamel microstructure are similar to Proconsul nyanzae, Dryopithecus laietanus, Lufengpithecus lufengensis, Graecopithecus freybergi and Pongo pygmaeus, while other features differ from extant and fossil hominoids. Crown formation times for the two teeth are 2.4-2.6 years and 2.9-3.1 years respectively. These times are similar to a number of extant and fossil hominoids, some of which appear to show additional developmental similarities, including thick enamel. Although thick enamel may be formed through several developmental pathways, most Miocene hominoids and fossil hominids with relatively thick enamel are characterized by a relatively long period of cuspal enamel formation and a rapid rate of enamel secretion throughout the whole cusp, but a shorter total crown formation time than thinner-enamelled extant apes.  相似文献   

16.
Canine tooth size reduction and the associated reduction in canine dimorphism is a basal hominin character that also provides important evidence for models of behavioral evolution. Two specimens of Australopithecus anamensis (KNM-KP 29287 and KNM-KP 29283) that do not preserve the canine crown, but do preserve the root or alveolus, appear to suggest that canine size variation and canine dimorphism in this species may have been greater than in other hominins. We evaluate canine root and crown dimensions in a series of extant hominoids, and estimate canine crown height in Australopithecus afarensis and A. anamensis. Our results demonstrate that it is possible to generate estimates of canine crown height from basal canine crown and root dimensions with a moderate degree of accuracy. Estimates of maxillary canine crown size for A. anamensis are slightly larger than those of A. afarensis, and are approximately the same size as canines of modern female chimpanzees. Estimated mandibular canine crown height is very similar in the two species. Variation within the A. anamensis sample of estimated canine crown heights is similar to that of modern humans, suggesting a low degree of sexual dimorphism. Inclusion of estimates for KNM-KP 29287 and KNM-KP 29283 does not substantially increase either the estimate of overall canine size or variation for A. anamensis.  相似文献   

17.
Sexual dimorphism is an important source of morphological variation, and species differences in dimorphism may be reflected in magnitude, pattern, or both. While the extant great apes are commonly used as a reference sample for distinguishing between sexual dimorphism and intertaxic variation in the fossil record, few studies have evaluated mandibular dimorphism in these taxa. In this study, percentage, degree, and pattern of mandibular dimorphism are evaluated in Pongo, Gorilla, and Pan. Mandibular dimorphism patterns are explored to determine the extent to which such patterns accurately track great ape phylogeny. Pattern stability is assessed to determine whether there are stable patterns of mandibular size and shape dimorphism that may be usefully applied to hominoid or hominid fossil species recognition studies. Finally, the established patterns of dimorphism are used to address recent debates surrounding great ape taxonomy. Results demonstrate that mandibular dimorphism is universally expressed in size, but only Pongo and Gorilla exhibit shape dimorphism. Pattern similarity tends to be greater between subspecies of the same species than between higher-order taxa, suggesting that within the great apes, there is a relationship between dimorphism pattern and phylogeny. However, this relationship is not exact, given that dimorphism patterns are weakly correlated between some closely related taxa, while great ape subspecies may be highly correlated with taxa belonging to other species or genera. Furthermore, dimorphism patterns are not significantly correlated between great ape genera, even between Gorilla and Pan. Dimorphism patterns are more stable in Gorilla and Pongo as compared to Pan, but there is little pattern stability between species or genera. Importantly, few variables differ significantly between taxa that simultaneously show consistently relatively low levels of dimorphism and low levels of variation within taxa. Combined, these findings indicate that mandibular dimorphism patterns can and do vary considerably, even among closely related species, and suggest that it would be difficult to employ great ape mandibular dimorphism patterns for purposes of distinguishing between intra- and interspecies variation in fossil samples. Finally, the degree of pattern similarity in mandibular dimorphism is lower than previously observed by others for craniofacial dimorphism. Thus, the possibility cannot be ruled out that patterns of craniofacial dimorphism in great apes may be associated with a stronger phylogenetic signal than are patterns of mandibular dimorphism.  相似文献   

18.
Canines of fossil hominoids and primitive catarrhines from several early, middle, and late Miocene sites were analyzed according to the shape indices described in Kelley (1995) and compared to those of males and females of extant great apes. In bivariate plots of the fossil canines utilizing the indices, 90% of the upper canines and 85% of the lower canines fell within or just outside the exclusively male or exclusively female territories delimited by the extant great apes. The remainder fell in the male-female overlap zones. Sex assignments based on these distributions were nearly 100% concordant with classifications according to canine height, suggesting a high degree of accuracy. There were various taxon-specific shifts in bivariate space among fossil genera, reflecting subtle differences in canine shape between taxa within the overall pattern of similarity to extant great apes as a whole. In many cases these shifts are matched by particular extant-ape species and subspecies, while other fossil taxa have no exact analogue for canine shape among the extant great apes. However, the pattern of spatial segregation of canines identified as either male or female at each of the sites largely mirrors that of males and females within the extant-ape sample, indicating that Miocene catarrhines shared with extant great apes a common pattern of shape differences between male and female canines, regardless of taxonspecific morphologies. These observations demonstrate that the canines of fossil catarrhines can be sexed with a high degree of confidence based solely on intrinsic features of shape. This will permit more reliable characterizations of morphological sexual dimorphism among fossil species. It is also argued that canine shape is a more reliable indicator of sex in fossil taxa than are canine/molar size ratios. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Methods of measuring tissue area from images of longitudinal thin tooth sections have been used to assess sexual dimorphism in the permanent dentition. The aim of this study was to demonstrate the extent of sexual dimorphism within the coronal tissue proportions of permanent mandibular canines and premolars, using area measurements of the enamel and dentine-pulp core. The sample consisted of embedded "half-tooth" sections from 45 individuals, all of known age-at-death and sex, collected from the St. Thomas' Anglican Church historic (1821-1874) cemetery site in Belleville, ON, Canada. The relative dentine-pulp area of the third premolars and canines displayed high levels of sexual dimorphism, as well as statistically significant mean differences between the sexes. The male canines and premolars have significantly more dentine than their female counterparts, as well as relatively more dentine with respect to overall crown size. The female canines and premolars have significantly more enamel relative to overall crown area than those of the males. These results suggest that relative area measures of crown tissues are more predictable measures of sexual dimorphism than absolute measures, and tissue proportions may remain constant despite intrasex variation in overall tooth crown size.  相似文献   

20.
Studies of fossil hominins are traditionally taxonomically narrow and often exclude comparisons with hylobatids. Hence, results of functional analyses of postcrania, interpreted as indicating that early hominins are "African-ape-like" in their postcranial skeletons and positional behaviors, may reflect an artifact of inadequate taxonomic and morphological breadth of the comparative sample. To address this problem and better understand early hominin positional behaviors, this study included hylobatids in a comparative analysis, focusing on the hominoid elbow joint. Specifically, morphometric variables of the proximal radius were derived from measurements from a sample of all genera of extant hominoids and casts of extinct hominin species. Univariate and multivariate analyses were performed on these data. Results show that early hominins are morphologically diverse and are not, as a group, similar to any one extant group. Instead, the fossils resemble Pan, Gorilla, and Hylobates, and are not like modern Homo sapiens or Pongo. This suggests that the morphology of Hylobates may reflect a morphotype for all later hominoids, thus complicating the functional interpretations of fossil hominins. The implications of these results are that the proximal radius is not a sensitive indicator of locomotor behavior among hominoids since the morphology in hylobatids and Gorilla and Pan is similar despite widely varying positional repertoires. Furthermore, inferences of function from form in extinct hominins can be drastically affected by the comparative outgroup selection. A re-evaluation of the functional morphology of the proximal radius in early hominins is addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号