首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of prostaglandin F2 alpha (PGF2 alpha) on blastocyst implantation in spayed rats has been studied. In preliminary experiments, the first implantation sites were observed 8 - 12 hours after a single injection of estrone in ovariectomized and progesterone-conditioned rats. Intraluminal instillation of PGF2 alpha into the right uterine horn 8 - 10 h after the estrone injection increased the number of implantation sites. Even treatment with PGF2 alpha without previous estrone injection induced the first step of blastocyst implantation as shown by uterine dye site reaction (Niagara-blue test). The results are discussed with regard to the possible role of PGF2 alpha in the regulation of the blastocyst implantation processes in the rat.  相似文献   

2.
Heparin binding EGF-like growth factor (HB-EGF), encoded by the Hegfl gene, is considered as an important mediator of embryo-uterine interactions during implantation in mice. However, it is unknown whether HB-EGF is important for implantation in species with different steroid hormonal requirements. In mice and rats, maternal ovarian estrogen and progesterone (P(4)) are essential to implantation. In contrast, blastocyst implantation can occur in hamsters in the presence of P(4) alone. To ascertain whether HB-EGF plays any role in implantation in hamsters, we examined the expression, regulation and signaling of HB-EGF in the hamster embryo and uterus during the periimplantation period. We demonstrate that both the blastocyst and uterus express HB-EGF during implantation. Hegfl is expressed solely in the uterine luminal epithelium surrounding the blastocyst prior to and during the initiation of implantation. Hypophysectomized P(4)-treated pregnant hamsters also showed a similar pattern of implantation-specific Hegfl expression. These results suggest that uterine Hegfl expression at the implantation site is driven by either signals emanating from the blastocyst or maternal P(4), but not by maternal estrogen. However, in ovariectomized hamsters, uterine induction of Hegfl requires the presence of estrogen and activation of its nuclear receptor (ER), but not P(4). This observation suggests an intriguing possibility that an estrogenic or unidentified signal from the blastocyst is the trigger for uterine HB-EGF expression. An auto-induction of Hegfl in the uterus by blastocyst-derived HB-EGF is also a possibility. We further observed that HB-EGF induces autophosphorylation of ErbB1 and ErbB4 in the uterus and blastocyst. Taken together, we propose that HB-EGF production and signaling by the blastocyst and uterus orchestrate the 'two-way' molecular signaling to initiate the process of implantation in hamsters.  相似文献   

3.
The presence and distribution of heparin-binding epidermal growth factor in rat uterine epithelial cells was determined immunohistochemically and localized ultrastructurally. Rat uterine tissue was examined on days 1, 3, 6 and 8 of pregnancy and it was found that while presence of this growth factor was evident from day 1, spatial reorganization occurred by the time of blastocyst implantation. Strong apical staining was evident from day 6 to day 8, day 6 being the approximate time of blastocyst implantation. Electron microscopy further revealed that this growth factor while shown to be expressed very strongly apically from day 6, actually localized on the plasma membrane only after attachment of the blastocyst. This suggests that heparin-binding epidermal growth factor is not involved in the initial stages of implantation but is more likely involved in the post attachment stages of pregnancy.  相似文献   

4.
Blastocyst implantation requires molecular and cellular interactions between the uterine luminal epithelium and blastocyst trophectoderm. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is induced in the mouse luminal epithelium solely at the site of blastocyst apposition at 16:00 hours on day 4 of pregnancy prior to the attachment reaction (22:00-23:00 hours), and that HB-EGF promotes blastocyst growth, zona-hatching and trophoblast outgrowth. To delineate which EGF receptors participate in blastocyst activation, the toxicity of chimeric toxins composed of HB-EGF or TGF-(&agr;) coupled to Pseudomonas exotoxin (PE) were used as measures of receptor expression. TGF-(&agr;) or HB-EGF binds to EGF-receptor (ErbB1), while HB-EGF, in addition, binds to ErbB4. The results indicate that ErbB1 is inefficient in mediating TGF-(&agr;)-PE or HB-EGF-PE toxicity as follows: (i) TGF-(&agr;)-PE was relatively inferior in killing blastocysts, 100-fold less than HB-EGF-PE, (ii) analysis of blastocysts isolated from cross-bred egfr+/- mice demonstrated that HB-EGF-PE, but not TGF-(&agr;)-PE, killed egfr-/- blastocysts, and (iii) blastocysts that survived TGF-(&agr;)-PE were nevertheless killed by HB-EGF-PE. HB-EGF-PE toxicity was partially mediated by cell surface heparan sulfate proteoglycans (HSPG), since a peptide corresponding to the heparin-binding domain of HB-EGF as well as heparitinase treatment protected the blastocysts from the toxic effects of HB-EGF-PE by about 40%. ErbB4 is a candidate for being an HB-EGF-responsive receptor since RT-PCR analysis demonstrated that day 4 mouse blastocysts express two different erbB4 isoforms and immunostaining with anti-ErbB4 antibodies confirmed that ErbB4 protein is expressed at the apical surface of the trophectoderm cells. It is concluded that (i) HB-EGF interacts with the blastocyst cell surface via high-affinity receptors other than ErbB1, (ii) the HB-EGF interaction with high-affinity blastocysts receptors is regulated by heparan sulfate, and (iii) ErbB4 is a candidate for being a high-affinity receptor for HB-EGF on the surface of implantation-competent blastocysts.  相似文献   

5.
An implantation-competent blastocyst, several hours prior to its attachment on the uterine wall, transmits signals to surrounding uterine cells and vice-versa to initiate a two-way interaction. The language of this precocious dialogue is versatile, taking advantage of secreted molecules for long-range interactions and membrane-bound molecules for more immediate interactions. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified as an early messenger of implantation which uses both modes of communication. In this review, we discuss the footprint of HB-EGF as to how it was initially identified as a mediator of implantation and how it initiates embryo-uterine interactions during this process.  相似文献   

6.
It is known that psychological stress affects reproduction in women, but it is unknown whether the effect is by impairing implantation. Although studies suggest that long periods of auditory or restraint stress may inhibit implantation in rats and mice, the exact stage of pregnancy at which stress impairs implantation is unclear. Furthermore, whether stress impairs implantation by decreasing the heparin-binding epidermal growth factor-like growth factor (HB-EGF), estrogen and/or progesterone and whether by acting on embryos or on the uterus need further investigations. In this study, a 24-h restraint stress was initiated at 15:30 of day 3 (regimen 1) or at 07:30 (regimen 2) or 15:30 of day 4 (regimen 3) of pregnancy (vaginal plug  =  day 1) to observe effects of restraint stress applied at different peri-implantation stages on implantation. Among the three regimens, whereas regimens 1 and 3 affected neither term pregnancy nor litter size, regimen 2 reduced both. Further observations indicated that regimen 2 of restraint stress also delayed blastocyst hatching and the attachment reaction, decreased serum concentrations of progesterone and estradiol, and down regulated the expression of HB-EGF in both the endometrium and blastocysts. Taken together, the results suggested that restraint stress inhibited mouse implantation in a temporal window-dependent manner and by impairing blastocyst activation and hatching and uterine receptivity via down-regulating HB-EGF, estrogen and progesterone. Thus, the stress applied within the implantation window impaired implantation by acting on both embryos and the uterus.  相似文献   

7.
Molecular cloning of the partial cDNA coding sequences of the four erbB receptors and the epidermal growth factor (EGF)-like ligands EGF, transforming growth factor alpha (TGF), and heparin-binding EGF (HB-EGF) has provided the basis for a comprehensive analysis of the spatiotemporal expression pattern of the EGF receptor/ligand system during the peri-implantation period in the rabbit. Employing nonradioactive in situ hybridization and immunolocalization, we observed differential expression of erbB1-erbB3 within the trophectoderm of the blastocyst. ErbB1 was strongly expressed in the cytotrophoblast but was downregulated upon syncytium formation. ErbB3 was a product of both the cyto- and syncytiotrophoblast. Despite the expression of erbB2 mRNA, the trophectoderm was devoid of immunoreactive ErbB2. ErbB4 gene activity was exclusively detected in the trophoblast at midpregnancy. The luminal and glandular epithelium and stroma of the nonpregnant, pseudopregnant, and pregnant rabbit uterus at Day 6 of gestation also expressed ErbB1-ErbB3. In the peri-implantation period, gene activities of erbB1-erbB3 were upregulated upon decidualization. At the site of implantation, uterine luminal epithelial cells apposing the preimplantation blastocyst displayed a distinct membrane immunolocalization of ErbB2, identifying the uterine epithelium as target for EGF, TGFalpha, and HB-EGF derived from both the embryonic trophectoderm and the uterine epithelium. In the luminal epithelium at the antimesometrial uterine site, HB-EGF gene activity was upregulated at the time of blastocyst attachment, but this upregulation was not reflected in an increase in immunoreactive HB-EGF. The detection of tyrosine phosphorylated ErbB2 in the rabbit placenta indicated the presence of a functional ErbB/EGF-like system in the pregnant rabbit uterus. This study provides strong evidence for a role of the ErbB/EGF-like system in embryo/maternal interactions during the peri-implantation period in the rabbit.  相似文献   

8.
Various mediators, including cytokines, growth factors, homeotic gene products, and prostaglandins (PGs), participate in the implantation process in an autocrine, paracrine, or juxtacrine manner. However, interactions among these factors that result in successful implantation are not clearly understood. Leukemia inhibitory factor (LIF), a pleiotropic cytokine, was shown to be expressed in uterine glands on day 4 morning before implantation and is critical to this process in mice. However, the mechanism by which LIF executes its effects in implantation remains unknown. Moreover, interactions of LIF with other implantation-specific molecules have not yet been defined. Using normal and delayed implantation models, we herein show that LIF is not only expressed in progesterone (P4)-primed uterine glands before implantation in response to nidatory estrogen, it is also induced in stromal cells surrounding the active blastocyst at the time of the attachment reaction. This suggests that LIF has biphasic effects: first in the preparation of the receptive uterus and subsequently in the attachment reaction. The mechanism by which LIF participates in these events was addressed using LIF-deficient mice. We observed that while uterine cell-specific proliferation, steroid hormone responsiveness, and expression patterns of several genes are normal, specific members of the EGF family of growth factors, such as amphiregulin (Ar), heparin-binding EGF-like growth factor (HB-EGF), and epiregulin, are not expressed in LIF(-/-) uteri before and during the anticipated time of implantation, although EGF receptor family members (erbBs) are expressed correctly. Furthermore, cyclooxygenase-2 (COX-2), an inducible rate-limiting enzyme for PG synthesis and essential for implantation, is aberrantly expressed in the uterus surrounding the blastocyst in LIF(-/-) mice. These results suggest that dysregulation of specific EGF-like growth factors and COX-2 in the uterus contributes, at least partially, to implantation failure in LIF(-/-) mice. Since estrogen is essential for uterine receptivity, LIF induction, and blastocyst activation, it is possible that the nidatory estrogen effects in the P4-primed uterus for implantation are mediated via LIF signaling. However, we observed that LIF can only partially resume implantation in P4-primed, delayed implanting mice in the absence of estrogen, suggesting LIF induction is one of many functions that are executed by estrogen for implantation.  相似文献   

9.
Cai L  Zhang J  Duan E 《Cytokine》2003,23(6):193-178
Embryo implantation depends on the synchronized development of the blastocyst and the endometrium. This process is highly controlled by the coordinated action of the steroid hormones: estrogen and progesterone. By autocrine, paracrine or juxtacrine routes, some growth factors or cytokines are involved in this steroidal regulation pathway. Here we report the effects of epidermal growth factor (EGF) on embryo implantation in the mouse, the expression and distribution patterns of EGF protein in the mouse blastocyst, ectoplacental cone (EPC) and peri-implantation uterus on days 1-8 of gestation.By RT-PCR and dot blot, we found that EGF and its receptor (EGFR) are co-expressed in the blastocyst and peri-implantational uteri of pregnant days 2-8 (D2-D8) mice. Injection of EGF antibody into a uterine horn on the third day of pregnancy (D3) significantly reduced the number of mouse embryos that implanted on D8, indicating EGF have a function in the mouse embryo implantation.Further investigation by using indirect immunofluorescence and confocal microscope was made to trace EGF and EGFR protein localization during the mouse embryo implantation. EGF and EGFR are co-localized in the blastocyst, and in the secondary trophoblastic giant cells (SGC) of the EPC. At the pre-implantation stage, the distribution of EGF protein in the mouse uterus changes from epithelium to stroma. On D1 of pregnancy, EGF is mainly distributed in uterine stroma and myometrium. On D2, it is present in the uterine epithelium. On D3, it changes again from the uterine epithelium to the stroma. By D4, EGF is predominantly in the stroma. This dynamic distribution correlates with the proliferation activity of uterine cells at each period. On D6-D8 of embryo implantation, EGF 3 protein accumulates at the uterine mesometrial pole, a region that contributes to the trophoblastic invasiveness and placentation.This temporal and spatial localization of EGF protein in the mouse uterus implicates the cytokine in the regulation of trophoblastic invasiveness and uterine receptiveness.  相似文献   

10.
Effects of leukaemia inhibitory factor on embryo implantation in the mouse   总被引:10,自引:0,他引:10  
Cai LQ  Cao YJ  Duan EK 《Cytokine》2000,12(11):1676-1682
Leukaemia inhibitory factor (LIF) is a pleiotrophic cytokine. Recent reports indicate that LIF is relevant to murine embryo implantation. In this work, results of indirect immunofluorescence under a confocal microscope illustrated that LIF was mainly located in the uterine lumen and uterine epithelial cells in pregnant mice on day 4. The number of embryos implanted in pregnant mice on day 8 decreased significantly after injection of 3 microg LIF antibodies into a uterine horn (P<0.001), which demonstrated again that LIF is a critical factor for embryo implantation. In a co-culture system, LIF (0.1 ng/ml, 1 ng/ml, 10 ng/ml and 100 ng/ml) significantly enhanced the blastocyst outgrowth after 24, 48 or 72 h of co-culture, and outgrowth areas after 72 h of co-culture. Conversely, 5 microg/ml and 10 microg/ml, but not 1 microg/ml, LIF antibodies decreased the percentage of blastocysts with outgrowth; only 10 microg/ml LIF antibody inhibited blastocyst outgrowth area significantly (P<0.001). However, neither LIF nor its antibodies changed embryo attachment. Analysis of correlation showed that the effects of LIF or its antibodies on the blastocyst outgrowth were dose-dependent. In summary, different pathways may exist to regulate the blastocyst attachment and outgrowth on a monolayer of uterine epithelial cells. LIF protein from the maternal uterus exerts an essential role in embryo implantation in the mouse, which is mediated by stimulating trophoblast outgrowth, but not by promoting the attachment.  相似文献   

11.
Heparin-binding EGF-like growth factor (HB-EGF) is expressed in the mouse endometrial epithelium during implantation exclusively at sites apposed to embryos and accelerates the development of cultured blastocysts, suggesting that it may regulate peri-implantation development in utero. We have examined the influence of HB-EGF on mouse trophoblast differentiation in vitro and the associated intracellular signaling pathways. HB-EGF both induced intracellular Ca2+ signaling and accelerated trophoblast development to an adhesion-competent stage, but only late on gestation day 4 after ErbB4, a receptor for HB-EGF, translocated from the cytoplasm to the apical surface of trophoblast cells. The acceleration of blastocyst differentiation by HB-EGF was attenuated after inhibition of protein tyrosine kinase activity or removal of surface heparan sulfate, as expected. Chelation of intracellular Ca2+ blocked the ability of HB-EGF to accelerate development, as did inhibitors of protein kinase C or calmodulin. The absence of any effect by a phospholipase C inhibitor and the requirement for extracellular Ca2+ suggested that the accrued free cytoplasmic Ca2+ did not originate from inositol phosphate-sensitive intracellular stores, but through Ca2+ influx. Indeed, N-type Ca2+ channel blockers specifically inhibited the ability of HB-EGF to both induce Ca2+ signaling and accelerate trophoblast development. We conclude that HB-EGF accelerates the differentiation of trophoblast cells to an adhesion-competent stage by inducing Ca2+ influx, which activates calmodulin and protein kinase C. An upstream role for ErbB4 in this pathway is implicated by the timing of its translocation to the trophoblast surface.  相似文献   

12.
Intraluminal injection of female rats at Day 5 of pseudopregnancy with 10-500 ng 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) significantly increased the uterine weight and induced decidual reaction. This effect was observed as early as the 3rd day after 1,25-(OH)2D3 injection. It was detectable only in the injected left horn and not in the non-injected right horn. A 500 ng dose of 25-(OH)D3 had no such effect. The present in-vivo results suggest that 1,25-(OH)2D3 may play a physiological role in endometrial cell differentiation into decidual cells, a crucial step in the process of blastocyst implantation.  相似文献   

13.
14.
Summary The morphology of the uterine microvasculature during early placentation was investigated by light microscopy, scanning electron microscopy of microvascular corrosion casts and transmission electron microscopy in rats 26 and 50 h after initiation of implantation. Increased vascular permeability at implantation sites was observed as a positive blue-dye test, spacing of vessels, and as localized extravasations of resin from postcapillary venules in the center of the endometrium. The subepithelial capillary plexus in the primary decidual zone adjacent to the blastocyst was shut down 50 h after initiation of implantation, most probably due to swelling of the metabolically activated endothelium and volume expansion of the decidual cells. This phenomenon coincided with the mesometrial orientation of the inner cell mass of the blastocyst; it may be a uterine mechanism to direct the ectoplacental cone toward the patent vessels in the mesometrial portion of the uterus. The remaining vessels at implantation sites were generally fewer, larger in diameter, more irregular in caliber, and more uniformly oriented along the implantation axis than their counterparts at inter-implantation sites. No vascular sprouts were observed during the interval studied.  相似文献   

15.
Serotonin, administered on the day after the initiation of implantation, promptly terminates pregnancy in the rat. Consequently, the effects of serotonin on serum progesterone levels, implantation site blood flow, and intrauterine oxygen tension were determined to see whether the disruption of implantation is related to altered corpus luteum and/or uterine vascular function. Animals received a subcutaneous injection of physiological saline (C: control) or serotonin (S: 20 mg/kg) on Day 5 of pregnancy. Serotonin did not alter the number of blastocysts implanting (C: 6.02 +/- 0.52 vs. S: 6.29 +/- 0.46, sites/cornu) but did cause subsequent implantation site resorption (C: 0.08 +/- 0.07 vs. S: 5.46 +/- 0.44/cornu; P less than 0.001). Progesterone levels in serotonin-treated rats did not differ from those of controls at 6 h postinjection or on Days 6 through 10 of pregnancy. Implantation site blood flow was reduced at 30 min (C: 0.76 +/- 0.12 vs. S: 0.25 +/- 0.02 ml/min per g; P less than 0.01) and remained suppressed at 2 h after serotonin injection. A prompt and sustained reduction in intrauterine oxygen tension (C: 48.9 +/- 3.7 vs. S: 25.9 +/- 4.5 mmHg; P less than 0.005; 120 min) accompanied the reduced uterine perfusion. Thus, disruption of implantation is not a result of impaired corpus luteum function but is associated with marked and protracted reductions in uterine blood flow and intraluminal oxygen availability.  相似文献   

16.
In the mouse, the process of implantation is initiated by the attachment reaction between the blastocyst trophectoderm and uterine luminal epithelium that occurs at 2200–2300 h on day 4 (day 1 = vaginal plug) of pregnancy. Several members of the EGF family are considered important in embryo–uterine interactions during implantation. This investigation demonstrates that the expression of two additions to the family, betacellulin and epiregulin, are exquisitely restricted to the mouse uterine luminal epithelium and underlying stroma adjacent to the implanting blastocyst. These genes are not expressed during progesterone-maintained delayed implantation, but are rapidly switched on in the uterus surrounding the implanting blastocyst following termination of the delay by estrogen. These results provide evidence that expression of betacellulin and epiregulin in the uterus requires the presence of an active blastocyst and suggest an involvement of these growth factors in the process of implantation.  相似文献   

17.
Transient elevation of intracellular calcium (Ca2+(i)) by various means accelerates murine preimplantation development and trophoblast differentiation. Several G-protein-coupled receptors (GPCRs), including the lysophosphatidic acid (LPA) receptor (LPAR), induce Ca2+(i) transients and transactivate the EGF receptor (ErbB1) through mobilization of EGF family members, including heparin-binding EGF-like growth factor (HB-EGF). Because HB-EGF accelerates blastocyst differentiation in vitro, we examined whether crosstalk between LPA and HB-EGF regulates peri-implantation development. During mouse blastocyst differentiation, embryos expressed LPAR1 mRNA constitutively, LPAR2 only in late stage blastocysts and no LPAR3. Consistent with a mechanism based on Ca2+(i) signaling, LPA rapidly accelerated the rate of trophoblast outgrowth, an index of blastocyst differentiation, and chelation of Ca2+(i) with BAPTA-AM blocked LPA stimulation. Interfering with HB-EGF signaling through ErbB1 or ErbB4 also attenuated LPA stimulation. We established that mouse blastocysts indeed express HB-EGF and that LPA induces the transient accumulation of HB-EGF on the embryo surface, which was blocked by treatment with either BAPTA-AM or the protein trafficking inhibitor, brefeldin A. We conclude that LPA accelerates blastocyst differentiation through its ability to induce Ca2+(i) transients and HB-EGF autocrine signaling. Transactivation of ErbB1 or ErbB4 by HB-EGF could represent a convergent signaling pathway accessed in the trophoblast by stimuli that mobilize Ca2+(i).  相似文献   

18.
Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1) h(-1)) compared to days 4 (0.34±0.03) and 5 (0.35±0.02) of pregnancy and to day 6 implantation sites (0.33±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04) and URB-597 (1.08±0.09 vs 0.83±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02), a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies.  相似文献   

19.
Intra-uterine injection of the lectin Concanavalin A (ConA) on day 5 of pseudopregnancy induced a rapid and persistent infiltration of leucocytes into the rat uterine stroma. Although the infiltration of leucocytes was seen along the entire length of the uterine horn, areas of stromal oedema, indicative of decidualization (as indicated by a positive Pontamine Sky Blue reaction), were only associated with regions in which leucocytes had crossed the uterine epithelium and were present in the uterine lumen. Ultrastructural evaluation of the interaction of the luminal leucocytes with the apical surface of the uterine epithelium appeared strikingly similar to that of the blastocyst and the uterine epithelium during normal implantation. It is proposed that leucocytes, induced by ConA, may initiate a decidual response in a manner analogous to that of the blastocyst through surface epithelial interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号