首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemokine BRAK/CXCL14 is an ancient member of the chemokine family whose functions in the brain are completely unknown. We examined the distribution of CXCL14 in the nervous system during development and in the adult. Generally speaking, CXCL14 was not expressed in the nervous system prior to birth, but it was expressed in the developing whisker follicles (E14.5) and subsequently in the hair follicles and skin. Postnatally, CXCL14 was also highly expressed in many regions of the brain, including the cortex, basal ganglia, septum and hippocampus. CXCL14 was also highly expressed in the dorsal root ganglia. We observed that in the hippocampal dentate gyrus (DG) CXCL14 was expressed by GABAergic interneurons. We demonstrated that CXCL14 inhibited GABAergic transmission to nestin-EGFP-expressing neural stem/progenitor cells in the adult DG. CXCL14 inhibited both the tonic and phasic effects of synaptically released GABA. In contrast CXCL12 enhanced the effects of GABA at these same synapses. CXCL14 increased [Ca(2+)](i) in neural stem cells cultured from the postnatal brain indicating that they expressed the CXCL14 receptor. These observations are consistent with the view that CXCL12 and CXCL14 may normally act as positive and negative regulators of the effects of GABA in the adult DG stem cell niche.  相似文献   

2.
《FEBS letters》2014,588(24):4769-4775
C-X-C motif chemokine 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) signaling is involved in ontogenesis, hematopoiesis, immune function and cancer. Recently, the orphan chemokine CXCL14 was reported to inhibit CXCL12-induced chemotaxis – probably by allosteric modulation of CXCR4. We thus examined the effects of CXCL14 on CXCR4 regulation and function using CXCR4-transfected human embryonic kidney (HEK293) cells and Jurkat T cells. CXCL14 did not affect dose–response profiles of CXCL12-induced CXCR4 phosphorylation, G protein-mediated calcium mobilization, dynamic mass redistribution, kinetics of extracellular signal-regulated kinase 1 (ERK1) and ERK2 phosphorylation or CXCR4 internalization. Hence, essential CXCL12-operated functions of CXCR4 are insensitive to CXCL14, suggesting that interactions of CXCL12 and CXCL14 pathways depend on a yet to be identified CXCL14 receptor.  相似文献   

3.
CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.  相似文献   

4.
The recent identification of two genes encoding distinct forms of the GABA synthetic enzyme, glutamate decarboxylase (GAD), raises the possibility that varying expression of the two genes may contribute to the regulation of GABA production in individual neurons. We investigated the postnatal development the two forms of GAD in the rat cerebellum. The mRNA for GAD67, the form which is less dependent on the presence of the cofactor, pyridoxal phosphate (PLP), is present at birth in presumptive Purkinje cells and increases during postnatal development. GAD67 mRNA predominates in the cerebellum. The mRNA for GAD65, which displays marked PLP-dependence for enzyme activity, cannot be detected in cerebellar cortex by in situ hybridization until P7 in Purkinje cells, and later in other GABA neurons. In deep cerebellar nuclei, which mature prenatally, both forms of GAD mRNA can be detected at birth. The amounts of immunoreactice GAD and GAD enzyme activity parallel changes in mRNA levels. We suggest that the delayed appearance of GAD65 is coincident with synapse formation between GABA neurons and their targets during the second postnatal week. GAD67 mRNA may be present prior to synaptogenesis to produce GABA for trophic and metabolic functions.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

5.
6.
目的:分析趋化因子CXCL14在系统性红斑狼疮(SLE)患者外周血单个核细胞(PBMC)中的表达及其启动子甲基化特征。方法:收集28例SLE患者和20名健康人外周血单个核细胞(PBMC)标本,抽提细胞中RNA,逆转录后,以GAPDH为内参,通过定量PCR检测PBMC中CXCL14的表达,统计分析CXCL14表达水平与SLE各种临床资料的相关性,探讨PBMC中CXCL14表达与SLE的关系,通过重亚硫酸盐修饰的全基因组DNA用以BSP测序来明确不同标本中CXCL14启动子中甲基化位点的甲基化率。结果:CXCL14在SLE患者和正常人PBMC中的表达量存在显著差异(P < 0.05)。与健康人PBMC中CXCL14的含量相比较,CXCL14在SLE患者PBMC中表达量显著降低。与进一步CXCL14表达水平与SLE各种临床资料的相关性分析显示,CXCL14表达水平与SSB抗体(干燥综合征B抗体)、蛋白尿及血小板计数相关。与SSB抗体阴性SLE患者比较,SSB抗体阳性患者CXCL14表达水平更低(P <0.05);与蛋白尿阴性SLE患者相比,蛋白尿阳性患者CXCL14表达水平更低(P < 0.05);而血小板升高患者的CX-CL14表达水平更高(P < 0.05)。CXCL14表达水平与SLE活动、肾损害指标、抗ds-DNA、C反应蛋白(CRP)、补体C3水平等指标未见显著相关性。CXCL14启动子区甲基化分析显示,SLE患者CpG岛甲基化明显高于正常对照。结论:PBMC中低表达的CXCL14与SLE发生发展相关,其启动子区CpG岛过度甲基化是SLE患者CXCL14低表达的重要机制。  相似文献   

7.
BRAK/CXCL14 (breast‐ and kidney‐expressed chemokine/CXC chemokine ligand 14) is a chemokine that is expressed in many normal cells and tissues but is absent from or expressed at very low levels in transformed cells and cancerous tissues, including HNSCC (head and neck squamous cell carcinoma). We reported previously that the forced expression of BRAK/CXCL14 in HNSCC (HSC‐3 BRAK) cells decreased the rate of tumour formation and size of tumour xenografts compared with mock‐vector‐introduced (HSC‐3 Mock) cells in athymic nude mice, even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that high‐level expression of the gene is important for the suppression of tumour establishment in vivo. For the first step to study the mechanisms of BRAK‐dependent tumour suppression, we compared characteristics between HSC‐3 BRAK and HSC‐3 Mock cells under in vitro culture conditions. The cell migration rate was lower in HSC‐3 BRAK cells than in HSC‐3 Mock cells. Also, HSC‐3 BRAK cells showed more rapid adhesion than HSC‐3 Mock cells when cultured on type I collagen‐coated dishes but not on fibronectin or laminin 1‐coated ones. This adhesion was mediated by α2β1 integrin. Immunofluorescent analysis of the cells cultured on type I collagen showed that HSC‐3 BRAK cells formed much more elongated focal adhesions co‐localized with paxillin and actin stress fibres than did HSC‐3 Mock cells. Treatment of parental HSC‐3 cells with recombinant BRAK stimulated the activation of Rap1, which is a ras family small GTPase, and formation of elongated focal adhesions, indicating that the difference in cell character observed between HSC‐3 Mock and HSC‐3 BRAK was not due to selection of clones of different character but due to expression of BRAK in the cells. The characteristic morphology of focal adhesions in HSC‐3 BRAK cells was perturbed by the introduction of an expression vector of the Rap‐binding domain of the Ral guanine nucleotide dissociation stimulator, a target of Rap1, into HSC‐3 BRAK cells, suggesting that Rap1 regulated the formation of the morphology of the focal adhesions. These data indicate that the expression of BRAK stimulated the formation of elongated focal adhesions of the HSC‐3 cells in an autocrine or paracrine fashion, in which stimulation may be responsible for the reduced migration of the cells.  相似文献   

8.
Abstract

Mesenchymal stem cells offer several potential advantages over other types of stem cells for cardiac repair. Nevertheless, poor survival of donor cells is one of the major concerns that hampers a better prognosis. Integrins, which involved in cell/extracellular matrix (ECM) interaction and connexins (Cxs), with a dual role as an anti-apoptotic and gap-junctional protein, can effectively resolve this issue. CXCL12, a member of the chemokine CXC subfamily, may play a role in stem cell survival and proliferation. CXCL12 activates several signaling pathways in stem cells, particularly the survival kinase, PI3K/Akt, which is also an important mediator of integrins and Cxs. Based on these characteristics of CXCL12, we investigated the potential of CXCL12 overexpression to induce integrin and connexin expression via PI3K/Akt pathway. Mesenchymal stem cells were transfected with adenovirus for increasing CXCL12 secretion. Membranous integrin and Cx expression as well as Akt expression levels were evaluated using Western blot analysis. Transfection resulted in increased CXCL12 in situ. Increased CXCL12 elevated membrane Cx43, Cx45, and integrin αVβ3 expression, as well as Cx phosphorylaton, which was activated by PI3K/Akt pathway. This mechanism may serve to improve mesenchymal stem cell viability in host tissue.  相似文献   

9.
10.
CXCL14 is a CXC chemokine family that exhibits antimicrobial activity and contains an amphipathic cationic α-helical region in the C-terminus, a characteristic structure of antimicrobial peptides (AMPs). In this study, we designed three analogs of CXCL1459–75 (named CXCL14-C17) corresponding to the C-terminal α-helix of CXCL14, which displayed potential antimicrobial activity against a wide variety of gram-negative and gram-positive bacteria with minimum inhibitory concentrations of 4?16?μM without mammalian cell toxicity. Furthermore, two CXCL14-C17 analogs (CXCL14-C17-a1 and CXCL14-C17-a3) with improved cell selectivity were engineered by introducing Lys, Arg, or Trp in CXCL14-C17. Additionally, CXCL14-C17 analogs showed much greater synergistic effect (FICI: 0.3125–0.375) with chloramphenicol and ciprofloxacin against multidrug-resistant Pseudomonas aeruginosa (MDRPA) than LL-37 did (FICI: 0.75–1.125). CXCL14-C17 analogs were more active against antibiotic-resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA), MDRPA, and vancomycin-resistant Enterococcus faecium (VREF) than LL-37 and melittin. In particular, CXCL14-C17-a2 and CXCL14-C17-a3 completely inhibited the biofilm formation at sub-MIC and all of the peptides were able to eliminate pre-formed biofilm as well. Membrane depolarization, flow cytometry, sytox green uptake, ONPG hydrolysis and confocal microscopy revealed the possible target of the native peptide (CXCL14-C17) to likely be intracellular, and the amphipathic designed analogs targeted the bacterial membrane. CXCL14-C17 also showed DNA binding characteristic activity similar to buforin-2. Interestingly, CXCL14-C17-a2 and CXCL14-C17-a3 effectively inhibited the production and expression of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1 from lipopolysaccharide (LPS)-stimulated RAW264.7 cells, suggesting that these peptides could be promising anti-inflammatory and antimicrobial agents.  相似文献   

11.
Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.  相似文献   

12.
Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.  相似文献   

13.
During early post‐natal development of the cerebellum, granule neurons (GN) execute a centripetal migration toward the internal granular layer, whereas basket and stellate cells (B/SC) migrate centrifugally to reach their final position in the molecular layer (ML). We have previously shown that pituitary adenylate cyclase‐activating polypeptide (PACAP) stimulates in vitro the expression and release of the serine protease tissue‐type plasminogen activator (tPA) from GN, but the coordinated role of PACAP and tPA during interneuron migration has not yet been investigated. Here, we show that endogenous PACAP is responsible for the transient arrest phase of GN at the level of the Purkinje cell layer (PCL) but has no effect on B/SC. tPA is devoid of direct effect on GN motility in vitro, although it is widely distributed along interneuron migratory routes in the ML, PCL, and internal granular layer. Interestingly, plasminogen activator inhibitor 1 reduces the migration speed of GN in the ML and PCL, and that of B/SC in the ML. Taken together, these results reveal for the first time that tPA facilitates the migration of both GN and fast B/SC at the level of their intersection in the ML through degradation of the extracellular matrix.

  相似文献   


14.
15.
In the developing rat cerebellum functional NMDA receptors (NMDARs) expressing the NR2C subunit have been identified on or after postnatal day 19. We obtained primary cultured cells from 19- to 35-day-old rat cerebellum that expressed few oligodendrocytes or astrocytes. Cultured cells were immunoreactive for neuron-specific proteins thus indicating a neuronal population. The primary neuron present was the granule cell as indicated by immunofluorescence for the GABAA alpha 6 subunit. Whole-cell patch-clamp experiments indicated that functional NMDARs were present. Functional characteristics of NMDARs expressed in cerebellar granule cells (CGCs) obtained from adolescent animals were similar to those previously reported for NMDARs expressed in CGCs obtained from neonatal rats. Cultured CGCs obtained from older animals contained NMDARs that were inhibited by EtOH and were less sensitive to the NR2B subunit-specific antagonist Ro 25-6981. Furthermore, NMDA-induced currents were smaller than those observed in CGCs. Western blot analysis indicated the presence of the NMDA NR2A and NR2C subunits, but not the NR2B in cultures obtained from the adolescent rats. CGCs obtained from adolescent rats express functional NMDARs consistent with a developmental profile observed in vivo .  相似文献   

16.
目的探讨心肌缺血-再灌注损伤中趋化因子CXCL10的产生机制。方法分别用LPS、H2O2、Ca2+载体A23187刺激原代培养的心肌细胞、骨髓来源的巨噬细胞或二者混合培养的共培养系统后,ELISA检测培养基上清中的趋化因子CXCL10和促炎性细胞因子IL-1β、IL-6、TNF-α的含量,观察其表达动力学。结果①大剂量(10μg/mL)的LPS刺激心肌细胞主要产生趋化因子CXCL10;刺激骨髓来源巨噬细胞主要产生促炎性细胞因子IL-1β、IL-6、TNF-α。②H2 O2、Ca2+通道激活剂并不能使产生趋化因子CXCL10或IL-1β、IL-6、TNF-α这些促炎性细胞因子。③骨髓来源的巨噬细胞促进心肌细胞表达趋化因子CXCL10;心肌细胞促进骨髓来源的巨噬细胞表达IL-6、TNF-α,但抑制IL-1β的表达。结论心肌细胞是心肌缺血-再灌注损伤中CXCL10潜在的细胞来源;CXCL10的表达,主要依赖于TLR4的激活。  相似文献   

17.
II3NeuAc-GgOse4Cer (GM1) gangliosidosis is an incurable lysosomal storage disease caused by a deficiency in acid beta-galactosidase (beta-gal), resulting in the accumulation of ganglioside GM1 and its asialo derivative GgOse4Cer (GA1) in the central nervous system, primarily in the brain. In this study, we investigated the effects of N-butyldeoxygalacto-nojirimycin (N B-DGJ), an imino sugar that inhibits ganglioside biosynthesis, in normal C57BL/6J mice and in beta-gal knockout (beta-gal-/-) mice from postnatal day 9 (p-9) to p-15. This is a period of active cerebellar development and central nervous system (CNS) myelinogenesis in the mouse and would be comparable to late-stage embryonic and early neonatal development in humans. N B-DGJ significantly reduced total ganglioside and GM1 content in cerebrum-brainstem (C-BS) and in cerebellum of normal and beta-gal-/- mice. N B-DGJ had no adverse effects on body weight or C-BS/cerebellar weight, water content, or thickness of the external cerebellar granule cell layer. Sphingomyelin was increased in C-BS and cerebellum, but no changes were found for cerebroside (a myelin-enriched glycosphingolipid), neutral phospholipids, or GA1 in the treated mice. Our findings indicate that the effects of N B-DGJ in the postnatal CNS are largely specific to gangliosides and suggest that N B-DGJ may be an effective early intervention therapy for GM1 gangliosidosis and other ganglioside storage disorders.  相似文献   

18.
Colon adenocarcinoma (COAD) is one of the most common malignant tumors with high morbidity and mortality rates worldwide. Due to the poor clinical outcomes, it is indispensable to investigate novel biomarkers for the diagnosis and prognosis of COAD. The aim of this study is to explore key genes as potential biomarkers for the diagnosis and prognosis of COAD for clinical utility. Gene expression profiles (GSE44076 and GSE44861) and gene methylation profile (GSE29490) were analyzed to identify the aberrantly methylated-differentially expressed genes by R language and Perl software. Function enrichments were performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Moreover, hub genes were identified through protein–protein interaction (PPI) network. Besides, key genes were found by the module analysis and The Cancer Genome Atlas (TCGA) survival analysis. Finally, TCGA data and quantitative real-time polymerase chain reaction (RT-qPCR) was used to validate the key genes involved in COAD. Our study found two hypomethylation-high-expression genes (CXCL3 and CXCL8) in COAD tissues compared with the adjacent normal tissues. These results were also confirmed by RT-qPCR with 25 pairs of COAD and adjacent normal tissues. Meanwhile, low expression of the two genes was associated with poor survival in patients with COAD. CXCL3 and CXCL8 may serve as key genes in the diagnosis and prognosis for COAD.  相似文献   

19.
CXCL11 is thought to play a critical role in allograft rejection. To clarify the role of CXCL11 in the rat transplantation model, we cloned CXCL11 cDNA from rat liver tissue and used it to study CXCL11 structure, function and expression. The rat CXCL11 gene encodes a protein of 100 amino acids and spans approximately a 2.8 kb DNA segment containing 4 exons in the protein coding region. Tissue distribution of rat CXCL11 was analyzed by quantitative RT-PCR and showed that rat CXCL11 mRNA is expressed in various tissues and, in particular, at high levels in the spleen and lymph nodes. COS-1 cells were transfected with a plasmid vector encoding rat CXCL11 and used to study CXCL11 effects on cell migration and internalization of CXCR3, the CXCL11 receptor. The recombinant CXCL11 showed chemotactic properties and induced CXCR3 internalization in CD4+ T cells. Expression of CXCL11 mRNA also was measured in rat acute (ACI to LEW) and chronic (LEW to F344) heart transplant rejection models. CXCL11 mRNA expression in allografts increased in both models, compared with controls, and was primarily observed in infiltrating macrophages and donor endothelial cells. These results indicate that, like the other CXCR3 chemokines, rat CXCL11 seems to have a role in the homing of CD4+ T cells in both acute and chronic rejection models of heart allotransplantation.  相似文献   

20.
Osteoblastic lineage cells (OBCs) are bone-building cells and essential component of hematopoietic niche, but mechanisms whereby bone-building and hematopoiesis-supportive activities of OBCs could be regulated simultaneously remain largely unknown. Here we found that B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) was involved in such a co-regulatory mechanism. In this study, we first found that, accompanied with marked decline of osteogenic activity, the hematopoietic niche in Bmi1 knockout (KO) mice was severely impaired and manifested as CXCL12 expression falls and LSK homing failure; however, intratibial injection with CXCL12 effectively facilitated LSK accumulation in bone marrow of Bmi1 KO mice. To try to rescue these defects in Bmi1 KO mice, we generated Bmi1KO/Sirt1Tg (KO-TG) double mutant mice with Sirt1 specific overexpression in mesenchymal progenitor cells (MPCs) in Bmi1 KO mice, and our data showed that KO-TG mice had significantly increased bone-building activity, elevated Cxcl12 expression by MPCs, increased LSK homing and expanded LSK pool in bone marrow compared to Bmi1 KO mice. Of note, similar improvements in KO-TG mice were observed in Bmi1 KO mice fed with dietary resveratrol, an established Sirt1 activator, comparing with KO control mice. Therefore, pharmacologic activation of Bmi1/Sirt1 signaling pathway could simultaneously promote bone-building and hematopoiesis-supportive activities of OBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号