首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Schmidt JJ  Stafford RG 《FEBS letters》2002,532(3):423-426
The peptide N-acetyl-CRATKML-amide is an effective inhibitor of type A botulinum neurotoxin (BoNT A) protease activity [Schmidt et al., FEBS Lett. 435 (1998) 61-64]. To improve inhibitor binding, the peptide was modified by replacing cysteine with other sulfhydryl-containing compounds. Ten peptides were synthesized. One peptide adapted the structure of captopril to the binding requirements of BoNT A, but it was a weak inhibitor, suggesting that angiotensin-converting enzyme is not a good model for BoNT A inhibitor development. However, replacing cysteine with 2-mercapto-3-phenylpropionyl yielded a peptide with K(i) of 330 nM, the best inhibitor of BoNT A protease activity reported to date. Additional modifications of the inhibitor revealed structural elements important for binding and supported our earlier findings that, with the exception of P1' arginine, subsites on BoNT A are not highly specific for particular amino acid side chains.  相似文献   

2.
The botulinum neurotoxin (BoNT) is the most lethal protein known to man causing the deadly disease botulinum. The neurotoxin, composed of a heavy (HC) and light (LC) chain, work in concert to cause muscle paralysis. A therapeutic strategy to treat individuals infected with the neurotoxin is inhibiting the catalytic activity of the BoNT LC. We report the synthesis, inhibition study and computational docking analysis of novel small molecule BoNT/A LC inhibitors. A structure activity relationship study resulted in the discovery of d-isoleucine functionalized with a hydroxamic acid on the C-terminal and a biphenyl with chlorine at C- 2 connected by a sulfonamide linker at the N-terminus. This compound has a measured IC50 of 0.587 µM for the BoNT/A LC. Computational docking analysis indicates the sulfonamide linker adopts a geometry that is advantageous for binding to the BoNT LC active site. In addition, Arg363 is predicted to be involved in key binding interactions with the scaffold in this study.  相似文献   

3.
A peptide-based immunoassay for antibodies against botulinum neurotoxin A   总被引:1,自引:0,他引:1  
Cervical dystonia (CD) is due to neck-muscle spasms that cause pain and involuntary contractions resulting in abnormal neck movements and posture. Symptoms can be relieved by injecting the affected muscle with a botulinum neurotoxin (BoNT, usually type A or type B). The therapeutic benefits are impermanent and toxin injections need to be repeated every 3-6 months. In a very small percentage of patients (less with BoNT/A than with BoNT/B) the treatment elicits blocking anti-toxin antibodies (Abs), which reduce or terminate the patient's responsiveness to further treatment. We have recently mapped (Dolimbek et al., 2006) the CD sera Ab-binding profile using a panel of 60, 19-residue peptides that encompassed the entire H chain sequence 449-1296 and overlapped consecutively by 5 residues. Abs in CD sera bound to one or more of the peptides N25, C10, C15, C20, and C31. This suggested the possibility that binding to these peptides could be used for assay of Abs in CD sera. Data analysis reported here found that Ab binding to these regions showed very significant deviations from the control responses. Of these four peptides, C10 showed the most significant level of separation between patient and control groups (p = 5 x 10(-7)) and the theoretical resolution (i.e., ability to distinguish CD patients from control, see full definition under 'Statistical analysis' in Methods), 84%, was about 4% higher than the least resolved response, C31 (p = 6 x 10(-6), resolution 80%). Since the amounts of Abs bound to a given peptide varied with the patient and not all the patients necessarily recognized all four peptides, there was the possibility that binding to combinations of two or more peptides might give a better discriminatory capability. Using two peptides, C10 plus C31, the resolution improved to 87% (p = 4 x 10(-8)). These two peptides appeared to compliment each other and negate the lower resolution of C31. Combination of three peptides gave resolutions that ranged from 85 (N25 + C15 + C31; p = 2 x 10(-7)) to 88% (C10 + C15 + C31; p = 1 x 10(-8)). Finally, using the data of all four peptides, N25 + C10 + C15 + C31, gave a resolution of 86% (p = 1 x 10(-7)). Although these levels of resolution are somewhat lower than that obtained with whole BoNT/A (resolution 97%; p = 6 x 10(-12)), it may be concluded that the two-peptide combination C10 + C31, or the three-peptide combination C10 + C15 + C31 (affording resolutions of 87 and 88%, respectively) provide a good diagnostic, toxin-free procedure for assay of total specific anti-toxin Abs in BoNT/A-treated CD patients.  相似文献   

4.
Botulinum neurotoxin A (BoNT/A) is the most potent toxin known. Unfortunately, it is also a potential bioweapon in terrorism, which is without an approved therapeutic treatment once cellular intoxication takes place. Previously, we reported how hydroxamic acid prodrug carbamates increased cellular uptake, which translated to successful inhibition of this neurotoxin. Building upon this research, we detail BoNT/A protease molecular modeling studies accompanied by the construction of small library of hydroxamic acids based on 2,4-dichlorocinnamic hydroxamic acid scaffold and their carbamate prodrug derivatization along with the evaluation of these molecules in both enzymatic and cellular models.  相似文献   

5.
The ultimate molecular action of botulinum neurotoxin (BoNT) is a Zn-dependent endoproteolytic activity on one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. There are seven serotypes (A-G) of BoNT having distinct cleavage sites on the SNARE substrates. The proteolytic activity is located on the N-terminal light chain (Lc) domain and is used extensively as the primary target toward therapeutic development against botulism. Here we describe an improved method using ultra-performance liquid chromatography (UPLC) whereby quantitative data were obtained in 1/10th the time using 1/20th the sample and solvent volumes compared with a widely used high-performance liquid chromatography (HPLC) method. We also synthesized a VAMP (vesicle-associated membrane protein)-based peptide containing an intact V1 motif that was efficiently used as a substrate by BoNT/D Lc. Although serotype C1 cleaves the serotype A substrate at a bond separated by only one residue, we were able to distinguish the two reactions by UPLC. The new method can accurately quantify as low as 7 pmol of the peptide substrates for BoNT serotypes A, B, C1, and D. We also report here that the catalytic efficiency of serotype A can be stimulated 35-fold by the addition of Triton X-100 to the reaction mixture. Combining the use of Triton X-100 with the newly introduced UPLC method, we were able to accurately detect very low levels of proteolytic activity in a very short time. Sensitivity of the assay and accuracy and rapidity of product analysis should greatly augment efforts in therapeutic development.  相似文献   

6.
Neurotoxins of Clostridium botulinum are needed in basic neurologic research, but as therapeutic agent for certain neuromuscular disorders like strabism as well. A method for the production and purification of botulinum neurotoxins C and D is reported using a two-step hollow-fiber cross flow filtration and a newly developed chromatographic purification procedure. Hollow-fiber filtration proved to be a rapid and safe concentration and pre-purification step, which can easily be scaled up. The chromatographic purification included hydrophobic interaction, anion exchange and size exclusion chromatography runs. Botulinum neurotoxins C and D could be recovered with an overall yield of 12.6% and 10.6%, respectively. A specific toxicity of 1.86 x 10(7) minimal lethal dose mg(-1) (type C) and 5.26 x 10(7) minimal lethal dose mg(-1) (type D) was determined in the mouse bioassay.  相似文献   

7.
Eubanks LM  Dickerson TJ  Janda KD 《FEBS letters》2005,579(24):5361-5364
Botulinum neurotoxin (BoNT) is the most toxic species known to humans and has been identified as a potential bioterrorist threat. Unfortunately, the only existing countermeasures for BoNT intoxication involve vaccinations that are only effective prior to entry of the toxin into neuronal cells. Herein, we disclose the ability of the micronutrient riboflavin (vitamin B(2)) to photooxidatively inactivate BoNT in cell-based assays without the need for toxin and riboflavin pre-exposure. In total, this study suggests that botulism neurotoxicity may be blunted with photodynamic therapy technology.  相似文献   

8.
Although botulinum neurotoxin serotype A (BoNT/A) is known for its use in cosmetics, it causes a potentially fatal illness, botulism, and can be used as a bioterror weapon. Many compounds have been developed that inhibit the BoNTA zinc-metalloprotease light chain (LC), however, none of these inhibitors have advanced to clinical trials. In this study, a fragment-based approach was implemented to develop novel covalent inhibitors of BoNT/A LC. First, electrophilic fragments were screened against BoNT/A LC, and benzoquinone (BQ) derivatives were found to be active. In kinetic studies, BQ compounds acted as irreversible inhibitors that presumably covalently modify cysteine 165 of BoNT/A LC. Although most BQ derivatives were highly reactive toward glutathione in vitro, a few compounds such as natural product naphthazarin displayed low thiol reactivity and good BoNT/A inhibition. In order to increase the potency of the BQ fragment, computational docking studies were employed to elucidate a scaffold that could bind to sites adjacent to Cys165 while positioning a BQ fragment at Cys165 for covalent modification; 2-amino-N-arylacetamides met these criteria and when linked to BQ displayed at least a 20-fold increase in activity to low μM IC50 values. Unlike BQ alone, the linked-BQ compounds demonstrated only weak irreversible inhibition and therefore acted mainly as non-covalent inhibitors. Further kinetic studies revealed a mutual exclusivity of BQ covalent inactivation and competitive inhibitor binding to sites adjacent to Cys165, refuting the viability of the current strategy for developing more potent irreversible BoNT/A inhibitors. The highlights of this study include the discovery of BQ compounds as irreversible BoNT/A inhibitors and the rational design of low μM IC50 competitive inhibitors that depend on the BQ moiety for activity.  相似文献   

9.
A full-length synthetic gene encoding the light chain of botulinum neurotoxin serotype B, approximately 50 kDa (BoNT/B LC), has been cloned into a bacterial expression vector pET24a+. BoNT/B LC was expressed in Escherichia coli BL21.DE3.pLysS and isolated from the soluble fraction. The resultant protein was purified to homogeneity by cation chromatography and was determined to be >98% pure as assessed by SDS-polyacrylamide gel stained with SilverXpress and analyzed by densitometry. Mass spectroscopic analysis indicated the protein to be 50.8 kDa, which equaled the theoretically expected mass. N-terminal sequencing of the purified protein showed the sequence corresponded to the known reported sequence. The recombinant BoNT/B light chain was found to be highly stable, catalytically active, and has been used to prepare antisera that neutralizes against BoNT/B challenge. Characterization of the protein including pH, temperature, and the stability of the protein in the presence or absence of zinc is described within. The influence of pH differences, buffer, and added zinc on secondary and tertiary structure of BoNT/B light chain was analyzed by circular dichroism and tryptophan fluorescence measurements. Optimal conditions for obtaining maximum metalloprotease activity and stabilizing the protein for long term storage were determined. We further analyzed the thermal denaturation of BoNT/B LC as a function of temperature to probe the pH and added zinc effects on light chain stability. The synthetic BoNT/B LC has been found to be highly active on its substrate (vesicle associated membrane protein-2) and, therefore, can serve as a useful reagent for BoNT/B research.  相似文献   

10.
11.
Our previous article described a fluorescence-based assay for monitoring the proteolytic activity of botulinum neurotoxin types A and E (BoNT/A and BoNT/E). As detailed in that article, the assay is based on depolarization due to Förster resonance energy transfer between blue fluorescent protein (BFP) and green fluorescent protein (GFP) moieties linked via residues 134–206 of SNAP-25 (synaptosome-associated protein of 25 kDa), the protein substrate for BoNT/A and BoNT/E. Before cleavage of this recombinant substrate, the polarization observed for the GFP emission, excited near the absorption maximum of the BFP, is very low due to depolarization following energy transfer from BFP to GFP. After substrate cleavage and diffusion of the fluorescent proteins beyond the energy transfer distance, the polarization is high due to observation of the emission only from directly excited GFP. This change in fluorescence polarization allows an assay, termed DARET (depolarization after resonance energy transfer), that is robust and sensitive. In this article, we characterize the spectroscopic parameters of the system before and after substrate cleavage, including excitation and emission spectra, polarizations, and lifetimes.  相似文献   

12.
Botulinum neurotoxins (BoNTs) are the most toxic substances known to humankind. Rapid and sensitive detection of BoNTs is necessary for timely clinical confirmation of the disease state in botulism. BoNTs cleave proteins and peptide mimics at specific sites. A mass spectrometry (MS)-based method, Endopep–MS, can detect these cleavages and has detection limits of 0.05–0.5 mouse LD50 (U) in serum, depending on the BoNT serotypes. In this method, the products generated from cleavage of peptide substrates using antibody affinity-purified toxins are detected by MS. Nonspecific bound endogenous proteases or peptidases in stool can coextract with the toxin, cleaving the peptide substrates and reducing the sensitivity of the method. Here we report a method to reduce nonspecific substrate cleavage by reducing stool protease coextraction in the Endopep–MS assay.  相似文献   

13.
Highly purified recombinant zinc-endopeptidase light chain of the botulinum neurotoxin serotype A underwent autocatalytic proteolytic processing and fragmentation. In the absence of added zinc, initially 10-28 residues were cleaved from the C-terminal end of the 448-residue protein followed by the appearance of an SDS-stable dimer and finally fragmentation near the middle of the molecule. In the presence of added zinc, the rate of fragmentation was accelerated but the specificity of the cleavable bond changed, suggesting a structural role for zinc in the light chain. The C-terminal proteolytic processing was reduced, and fragmentation near the middle of the molecule was prevented by adding the metal chelator TPEN to the light chain. Similarly, adding a competitive peptide inhibitor (CRATKML) of the light-chain catalytic activity also greatly reduced the proteolysis. With these results, for the first time, we provide clear evidence that the loss of C-terminal peptides and fragmentation of the light chain are enzymatic and autocatalytic. By isolating both the large and small peptides, we sequenced them by Edman degradation and ESIMS-MS, and mapped the sites of proteolysis. We also found that proteolysis occurred at F266-G267, F419-T420, F423-E424, R432-G433, and C430-V431 bonds in addition to the previously reported Y250-Y251 and K438-T439 bonds.  相似文献   

14.
Botulinum neurotoxin (BoNT) is one of the most toxic substances known to produce severe neuromuscular paralysis. The currently used vaccine is prepared mainly from biohazardous toxins. Thus, we studied an alternative method and demonstrated that DNA immunization provided sufficient protection against botulism in a murine model. A plasmid of pBoNT/A-Hc, which encodes the fragment C gene of type A botulinum neurotoxin, was constructed and fused with an Igkappa leader sequence under the control of a human cytomegalovirus promoter. After 10 cycles of DNA inoculation with this plasmid, mice survived lethal doses of type A botulinum neurotoxin challenges. Immunized mice also elicited cross-protection to the challenges of type E botulinum neurotoxin. This is the first study demonstrating the potential use of DNA vaccination for botulinum neurotoxins.  相似文献   

15.
Methods that do not require animal sacrifice to detect botulinum neurotoxins (BoNTs) are critical for BoNT antagonist discovery and the advancement of quantitative assays for biodefense and pharmaceutical applications. Here we describe the development and optimization of fluorogenic reporters that detect the proteolytic activity of BoNT/A, B, D, E, F, and G serotypes in real time with femtomolar to picomolar sensitivity. Notably, the reporters can detect femtomolar concentrations of BoNT/A in 4 h and BoNT/E in 20 h, sensitivity that equals that of animal-based methods. The reporters can be used to determine the specific activity of BoNT preparations with intra- and inter-assay coefficients of variation of approximately 10%. Finally, we find that the greater sensitivity of our reporters compared with those used in other commercially available assays makes the former attractive candidates for high-throughput screening of BoNT antagonists.  相似文献   

16.
The category A agent, botulinum neurotoxin (BoNT), is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, we have identified three RNA aptamers through SELEX-process, which bind strongly to the light chain of type A BoNT (BoNT/A) and inhibit the endopeptidase activity, with IC50 in low nM range. Inhibition kinetic studies reveal low nM KI and non-competitive nature of their inhibition. Aptamers are unique group of molecules as therapeutics, and this is first report of their development as an antidote against botulism. These data on KI and IC50 strongly suggest that the aptamers have strong potential as antidotes that can reverse the symptom caused by BoNT/A.  相似文献   

17.
The catalytic domain, known as light chain (Lc), of the most poisonous botulinum neurotoxins (BoNTs), possesses endoprotease activity that triggers the ultimate poisonous effect to animals and humans. X-ray crystallographic structure of Lc of several BoNT serotypes has identified at least four small ligands at or near the respective active sites. They are sulfate ions in LcA, LcB, and LcE; an acetate ion in LcA; a calcium ion in LcB; and a potassium ion in LcD. Roles of these ligands on the structure and function of the proteins are not known. We have investigated the roles of sulfate, acetate, and calcium on the catalytic activities of LcA, LcB, and LcE using 17-35-residue synthetic peptide substrates. All three ligands inhibited all Lc activities. For LcA and LcB, the order of inhibition effectiveness was calcium>sulfate>acetate. The inhibition effectiveness expressed as IC50, did not correlate with the occurrence or proximity of the ions to the active site. Moreover, addition of acetate or sulfate to LcA did not affect the near-UV circular dichroism spectra, tryptophan, and tyrosine fluorescence spectra, and mid points of thermal denaturation of LcA. Our results suggest that acetate, sulfate, and calcium nonspecifically interact with BoNT Lc, and their occurrence in the crystal structures could have been due to opportunistic binding to complementary pockets.  相似文献   

18.
19.
A rapid immunochromatographic assay was developed to detect botulinum neurotoxin type B (BoNT/B). The assay was based on the sandwich format using polyclonal antibody (Pab). The thiophilic gel purified anti-BoNT/B Pab was immobilized to a defined detection zone on a porous nitrocellulose membrane and conjugated to colloidal gold particles that served as a detection reagent. The BoNT/B-containing sample was added to the membrane and allowed to react with Pab-coated particles. The mixture was then passed along the porous membrane by capillary action past the Pab in the detection zone, which will bind the particles that had BoNT/B bound to their surface, giving a red colour within this detection zone with an intensity proportional to BoNT/B concentration. In the absence of BoNT/B, no immunogold was bound to the solid-phase antibody. With this method, 50 ng/ml of BoNT/B was detected in less than 10 min. The assay sensitivity can be increased by silver enhancement to 50 pg/ml. The developed BoNT/B assay also showed no cross reaction to type A neurotoxin (BoNT/A) and type E neurotoxin (BoNT/E).  相似文献   

20.
Botulinum neurotoxins (BoNTs) are the most lethal of biological substances, and are categorized as class A biothreat agents by the Centers for Disease Control and Prevention. There are currently no drugs to treat the deadly flaccid paralysis resulting from BoNT intoxication. Among the seven BoNT serotypes, the development of therapeutics to counter BoNT/A is a priority (due to its long half-life in the neuronal cytosol and its ease of production). In this regard, the BoNT/A enzyme light chain (LC) component, a zinc metalloprotease responsible for the intracellular cleavage of synaptosomal-associated protein of 25 kDa, is a desirable target for developing post-BoNT/A intoxication rescue therapeutics. In an earlier study, we reported the high throughput screening of a library containing 70,000 compounds, and uncovered a novel class of benzimidazole acrylonitrile-based BoNT/A LC inhibitors. Herein, we present both structure–activity relationships and a proposed mechanism of action for this novel inhibitor chemotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号