首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine CD4(+)CD25(+) regulatory cells have been reported to express latency-associated peptide (LAP) and TGF-beta on the surface after activation, and exert regulatory function by the membrane-bound TGF-beta in vitro. We have now found that a small population of CD4(+) T cells, both CD25(+) and CD25(-), can be stained with a goat anti-LAP polyclonal Ab without being stimulated. Virtually all these LAP(+) cells are also positive for thrombospondin, which has the ability to convert latent TGF-beta to the active form. In the CD4(+)CD45RB(high)-induced colitis model of SCID mice, regulatory activity was exhibited not only by CD25(+)LAP(+) and CD25(+)LAP(-) cells, but also by CD25(-)LAP(+) cells. CD4(+)CD25(-)LAP(+) T cells were part of the CD45RB(low) cell fraction. CD4(+)CD25(-)LAP(-)CD45RB(low) cells had minimal, if any, regulatory activity in the colitis model. The regulatory function of CD25(-)LAP(+) cells was abrogated in vivo by anti-TGF-beta mAb. These results identify a new TGF-beta-dependent regulatory CD4(+) T cell phenotype that is CD25(-) and LAP(+).  相似文献   

2.
CD4(+)CD25(+) regulatory T cells (Tregs) are essential for maintaining self-tolerance and immune homeostasis. Here we characterize a novel subset of CD4(+)CD25(+) Tregs that express latency-associated peptide (LAP) on their cell surface (CD4(+)CD25(+)LAP(+) cells). CD4(+)CD25(+)LAP(+) cells express elevated levels of Foxp3 and Treg-associated molecules (CTLA4, glucocorticoid-induced TNFR-related gene), secrete TGFbeta, and express both cell surface TGFbeta and surface receptors for TGFbeta. In vitro, the suppressive function of CD4(+)CD25(+)LAP(+) cells is both cell contact and soluble factor dependent; this contrasts with CD4(+)CD25(+)LAP(-) cells, which are mainly cell contact dependent. In a model of experimental autoimmune encephalomyelitis, CD4(+)CD25(+)LAP(+) cells exhibit more potent suppressive activity than CD4(+)CD25(+)LAP(-) cells, and the suppression is TGFbeta dependent. We further show that CD4(+)CD25(+)LAP(+) cells suppress myelin oligodendrocyte glycoprotein-specific immune responses by inducing Foxp3 and by inhibiting IL-17 production. Our findings demonstrate that CD4(+)CD25(+) Tregs are a heterogeneous population and that the CD4(+)CD25(+) subset that expresses LAP functions in a TGFbeta-dependent manner and has greater in vivo suppressive properties. Our work helps elucidate the ambiguity concerning the role of TGFbeta in CD4(+)CD25(+) Treg-mediated suppression and indicates that LAP is an authentic marker able to identify a TGFbeta-expressing CD4(+)CD25(+) Treg subset.  相似文献   

3.
Lamina-associated polypeptide (LAP) 2alpha is a nonmembrane-bound LAP2 isoform that forms complexes with nucleoplasmic A-type lamins. In this study, we show that the overexpression of LAP2alpha in fibroblasts reduced proliferation and delayed entry into the cell cycle from a G0 arrest. In contrast, stable down-regulation of LAP2alpha by RNA interference accelerated proliferation and interfered with cell cycle exit upon serum starvation. The LAP2alpha-linked cell cycle phenotype is mediated by the retinoblastoma (Rb) protein because the LAP2alpha COOH terminus directly bound Rb, and overexpressed LAP2alpha inhibited E2F/Rb-dependent reporter gene activity in G1 phase in an Rb-dependent manner. Furthermore, LAP2alpha associated with promoter sequences in endogenous E2F/Rb-dependent target genes in vivo and negatively affected their expression. In addition, the expression of LAP2alpha in proliferating preadipocytes caused the accumulation of hypophosphorylated Rb, which is reminiscent of noncycling cells, and initiated partial differentiation into adipocytes. The effects of LAP2alpha on cell cycle progression and differentiation may be highly relevant for the cell- and tissue-specific phenotypes observed in laminopathic diseases.  相似文献   

4.
l-Leucine aminopeptidases (LAPs) are implicated in the progress of many pathological disorders and play some regulatory roles in tumor cell proliferation, invasion, and/or angiogenesis. Thus, LAPs not only could become new diagnostic or prognostic biomarkers but also may have potential as novel molecular targets for the treatment of several cancers. Highly sensitive assays are critical for early detection of changes in LAP activity and for screening potent LAP inhibitors. In this study, we developed a novel and highly sensitive fluorescent assay for LAPs based on substituted aminopyridines as fluorescent reporters. This assay was at least 100- and 20-fold more sensitive than commercial colorimetric and fluorescent LAP substrates, respectively. We also showed that this assay was a useful tool for monitoring LAP activities in extracts from cancer cell lines, as well as for the high-throughput screening of inhibitors, which could lead to new cancer treatments.  相似文献   

5.
6.
Latency Associated Peptide (LAP) binds TGF-beta1, forming a latent complex. Currently, LAP is presumed to function only as a sequestering agent for active TGF-beta1. Previous work shows that LAP can induce epithelial cell migration, but effects on leukocytes have not been reported. Because of the multiplicity of immunologic processes in which TGF-beta1 plays a role, we hypothesized that LAP could function independently to modulate immune responses. In separate experiments we found that LAP promoted chemotaxis of human monocytes and blocked inflammation in vivo in a murine model of the delayed-type hypersensitivity response (DTHR). These effects did not involve TGF-beta1 activity. Further studies revealed that disruption of specific LAP-thrombospondin-1 (TSP-1) interactions prevented LAP-induced responses. The effect of LAP on DTH inhibition depended on IL-10. These data support a novel role for LAP in regulating monocyte trafficking and immune modulation.  相似文献   

7.
We report a study of a series of isoquinoline derivatives, including their synthesis, in vitro microsomal leucine aminopeptidase (LAP) inhibition and antiproliferative activity on cancer cell lines. Among fourteen tested compounds, one (compound 3b) was determined to have good activity against LAP and significant antiproliferative activity against HL-60 human promyelocytic leukemia, Burkitt’s lymphoma Raji, camptothecin resistant CEM/C2 leukemia cells with mutated catalytic site of topoisomerase I, its parental cell line CCRF/CEM and LoVo colon cancer. Its influence on the cell cycle was also observed. Moreover, we have confirmed that antiproliferative activity towards cancer cells is due to LAP inhibition. Docking simulation based on positioning compound 3b into the LAP active site was performed to explore the possible binding mode. The compound was able to form hydrogen bonds with Gly362 and coordinate zinc ions, which was previously suggested to be essential for inhibitory activity. Compound 3b was also characterized with a good selectivity index for cancer versus normal mammalian cells. Toxicological studies involving examination of skin sensitization, acute skin irritation/corrosion, acute dermal toxicity, acute oral toxicity and acute eye irritation/corrosion established that compound 3b is safe for use.  相似文献   

8.
M Buck  H Turler    M Chojkier 《The EMBO journal》1994,13(4):851-860
During postnatal liver development, LAP (NF-IL-6, C/EBP beta) expression and hepatocyte proliferation are mutually exclusive. In addition to transactivating liver-specific genes, LAP, but not C/EBP alpha, arrests the cell cycle before the G1/S boundary in hepatoma cells. LIP, a liver-inhibitory protein, which is translated from LAP mRNA lacking the activation domain of LAP, is not only ineffective in blocking hepatoma cell proliferation but also antagonizes the effect of LAP on the cell cycle. Deletion analysis indicated that this effect of LIP required only the DNA-binding and leucine zipper domains. In addition we found that integrity of the LAP dimerization and activation domains is indispensable for the arrest of cell proliferation induced by LAP. Thus, hepatocyte differentiation and its characteristic quiescent state may be modulated by the LAP/LIP ratio.  相似文献   

9.
10.
N. A. Hall 《Biochemical genetics》1986,24(9-10):775-793
Four major peptidases of Drosophila melanogaster have been described and distinguished by their electrophoretic mobilities, molecular weights, net electrical charges, and substrate specificities. The previously described leucine aminopeptidase, LAP D, consists of at least two isozymes, designated here LAP P and LAP G. In pupae most LAP activity results from LAP P (pupal); in larvae and adults, in contrast, most LAP activity results from LAP G (gut). These two LAPs may be separated by electrophoresis in the presence of the nonionic detergent Triton X-100. A specific assay for LAP P, which exploits the large difference between the net electrical charge of LAP P and that of LAP G, is described. The activity levels of two dipeptidases, Dip A and Dip B, were high in all the postembryonic stages examined. Specific assays for Dip A and Dip B were used to show that for each of these isozymes, the activity in an adult is proportional to gene dosage.  相似文献   

11.
Yamagata H  Saka K  Tanaka T  Aizono Y 《FEBS letters》2001,494(1-2):24-29
Light induced rapid and transient activation of a 46-kDa protein kinase in soybean photomixotrophic cell culture. This kinase was designated as LAP kinase (light signal-activated protein kinase). Activation of LAP kinase in response to light was associated with tyrosine phosphorylation of the kinase, and treatment of the kinase with protein tyrosine phosphatase abolished its activity. The LAP kinase efficiently phosphorylated myelin basic protein and histone, but did not phosphorylate casein. Phospho-amino acid analysis indicated that the LAP kinase was a serine/threonine protein kinase. These results indicated that the LAP kinase is related to the MAP kinase family of protein kinases.  相似文献   

12.
Latency Associated Peptide (LAP) binds TGF-β1, forming a latent complex. Currently, LAP is presumed to function only as a sequestering agent for active TGF-β1. Previous work shows that LAP can induce epithelial cell migration, but effects on leukocytes have not been reported. Because of the multiplicity of immunologic processes in which TGF-β1 plays a role, we hypothesized that LAP could function independently to modulate immune responses. In separate experiments we found that LAP promoted chemotaxis of human monocytes and blocked inflammation in vivo in a murine model of the delayed-type hypersensitivity response (DTHR). These effects did not involve TGF-β1 activity. Further studies revealed that disruption of specific LAP-thrombospondin-1 (TSP-1) interactions prevented LAP-induced responses. The effect of LAP on DTH inhibition depended on IL-10. These data support a novel role for LAP in regulating monocyte trafficking and immune modulation.  相似文献   

13.
Phagocytosis and autophagy are two distinct pathways that degrade external and internal unwanted particles. Both pathways lead to lysosomal degradation inside the cell, and over the last decade, the line between them has blurred; autophagy proteins were discovered on phagosomes engulfing foreign bacteria, leading to the proposal of LC3‐associated phagocytosis (LAP). Many proteins involved in macroautophagy are used for phagosome degradation, although Atg8/LC3 family proteins only decorate the outer membrane of LC3‐associated phagosomes, in contrast to both autophagosome membranes. A few proteins distinguish LAP from autophagy, such as components of the autophagy pre‐initiation complex. However, most LAP cargo is wrapped in multiple layers of membranes, making them similar in structure to autophagosomes. Recent evidence suggests that LC3 is important for the degradation of internal membranes, explaining why LC3 would be a vital part of both macroautophagy and LAP. In addition to removing invading pathogens, multicellular organisms also use LAP to degrade cell debris, including cell corpses and photoreceptor outer segments. The post‐mitotic midbody remnant is another cell fragment, which results from each cell division, that was recently added to the growing list of LAP cargoes. Thus, LAP plays an important role during the normal physiology and homoeostasis of animals.  相似文献   

14.
15.
Lipid A-associated protein (LAP) isolated from preparations of bacterial lipopolysaccharides (LPS, endotoxins) has been demonstrated to initiate the release of amines from rat peritoneal mast cells. The release at low concentrations of LAP requires both cellular energy and calcium, and thus appears to be a true secretory response. At higher concentrations the release is independent of these variables. The time required for maximal response is approximately 10 to 15 min at 37 degrees C. The response appears to be a general property of Escherichia coli LAP preparations since LAP isolated from three serotypes of these organisms all have similar activity. On the basis of heat lability at 100 degrees C, the ability of LAP to initiate mast cell secretion appears to be independent of its ability mitogenically to stimulate murine B lymphocytes.  相似文献   

16.
Urinary gamma glutamyltranspeptidase (GGT) and leucine aminopeptidase (LAP), renal tubular brush border enzymes, have been shown to be sensitive indicators of renal tubular functions. This study documents circadian rhythms in the urinary activity of GGT and LAP, statistically validated and quantified by the cosinor method, in 15 male Wistar rats standardized to a LD 12:12 illumination schedule (light from 0800 hr to 2000 hr) and fed ad libitum. The acrophase of the circadian rhythms in urinary GGT and LAP activity occurred at the end of the rest span of the animals: between 1730 and 1915 for GGT (depending on the mode of expression of the activity) and between 1700 and 1910 for LAP. Of striking resemblance in their timing, both these rhythms were also of large amplitude (about 50% of the mesor for urinary GGT activity and about 45% for LAP one). The circadian acrophases of urinary GGT and LAP activity led in timing the circadian rhythms in urine volume and creatinine excretion by about 13hr. Such findings consistent with the circadian variations found by other investigators in GGT in kidney homogenates or in LAP in human urine thus reflect a periodicity in renal tubular function. The reasons for these circadian variations, still unknown at this time, are discussed. The influence recently demonstrated of the hormonal context on protein and enzyme synthesis at the tubule, and its phase relations to urinary enzyme excretion emphasize how much the circadian rhythm in urinary GGT and LAP activity is well included in the murine time structure. Therefore it should be of interest to consider the circadian rhythm in urinary GGT and LAP release as a marker rhythm of predictive value as to the side effects of nephrotoxic drugs.  相似文献   

17.
Urinary gamma glutamyltranspeptidase (GGT) and leucine aminopeptidase (LAP), renal tubular brush border enzymes, have been shown to be sensitive indicators of renal tubular functions. This study documents circadian rhythms in the urinary activity of GGT and LAP, statistically validated and quantified by the cosinor method, in 15 male Wistar rats standardized to a LD 12:12 illumination schedule (light from 0800 hr to 2000 hr) and fed ad libitum. The acrophase of the circadian rhythms in urinary GGT and LAP activity occurred at the end of the rest span of the animals: between 1730 and 1915 for GGT (depending on the mode of expression of the activity) and between 1700 and 1910 for LAP. Of striking resemblance in their timing, both these rhythms were also of large amplitude (about 50% of the mesor for urinary GGT activity and about 45% for LAP one). The circadian acrophases of urinary GGT and LAP activity led in timing the circadian rhythms in urine volume and creatinine excretion by about 13hr. Such findings consistent with the circadian variations found by other investigators in GGT in kidney homogenates or in LAP in human urine thus reflect a periodicity in renal tubular function. The reasons for these circadian variations, still unknown at this time, are discussed. The influence recently demonstrated of the hormonal context on protein and enzyme synthesis at the tubule, and its phase relations to urinary enzyme excretion emphasize how much the circadian rhythm in urinary GGT and LAP activity is well included in the murine time structure. Therefore it should be of interest to consider the circadian rhythm in urinary GGT and LAP release as a marker rhythm of predictive value as to the side effects of nephrotoxic drugs.  相似文献   

18.
Leucine aminopeptidases (LAPs) were associated with tumor cell proliferation, invasion and/or angiogenesis. We aimed to examine the biological function of LAP3 in esophageal squamous cell carcinoma (ESCC). LAP3 expressions were examined in human ESCC tissue and cell lines ECA109 and TE1 cells. Recombinant pSilencer4.1-LAP3–shRNA was transfected into ECA109 cells to silence LAP3 expression. The effects of LAP3 silencing on ECA109 cell proliferation in vitro were evaluated. Flow cytometry profiling was used to detect the differentiate cell cycle distribution in LAP3-silenced ECA109 cells. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in LAP3-silenced ECA109 cells. We overexpressed LAP3 in TE1 cells to find out the corresponding results. LAP3 expression level was abundance in ESCC tissue. LAP3 silencing significantly reduced ECA109 cell proliferation and colony formation. The knockdown of LAP3 resulted in cell cycle arrest at G1-phase. Moreover, over expression of LAP3 favors TE1 cell proliferation and invasiveness which also confirms its contribution in malignant development. We came to the conclusion that LAP3 contributed to ESCC progression by overcoming cell cycle arrest. The proliferative and migration effects of LAP3 might contribute to malignant development of human ESCC.  相似文献   

19.
In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 alpha (LAP2alpha) upon entry and exit from G(0) is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2alpha are down-regulated in G(0). Although RbS780 phosphoform and LAP2alpha are up-regulated upon reentry into G(1) and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments. In HDFs, which are null for lamins A/C, LAP2alpha is mislocalized within nuclear aggregates, and this is correlated with cell cycle arrest and accumulation of Rb within speckles. Nuclear retention of nucleoplasmic Rb during G(1) phase but not of speckle-associated Rb depends on lamin A/C. siRNA knock down of LAP2alpha or lamin A/C in HDFs leads to accumulation of Rb in speckles and G(1) arrest, probably because of activation of a cell cycle checkpoint. Our results suggest that LAP2alpha and lamin A/C are involved in controlling Rb localization and phosphorylation, and a lack or mislocalization of either protein leads to cell cycle arrest in HDFs.  相似文献   

20.
Production of IL-6 constituted the major cause of death in the ATRA trial called retinoic acid syndrome (RAS). LAP and LIP are active and inactive isoforms of C/EBPβ, respectively. Inactive LIP dimerized with LAP to eliminate its activity. Following treatment with ATRA, CHOP expression was increased and dimerized with LIP more preferentially than LAP to rescue function of LAP. Oroxylin A has been reported to activate CHOP, a key mediator of unfolded protein response (UPR) pathway, and resulted in apoptosis. Interestingly, we found that low concentration of oroxylin A (≦ 40 μM) showed no apoptosis effect on NB4 and HL-60 cells and decreased the CHOP protein level via promoting its degradation. MG132 was utilized to conform the effect of oroxylin A on degrading CHOP. Our results showed that oroxylin A decreased the level of IL-6 secretion of NB4 cells with or without ATRA treatment while the effect was eliminated by C/EBPβ siRNA. We conclude that oroxylin A possessed abilities of inhibiting the ATRA-induced IL-6 production via modulation of LAP/LIP/CHOP in leukemia cell lines, which could providing a therapeutic strategy for RAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号