首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
We have purified the DNA polymerase II of Escherichia coli from the recombinant strain carrying the plasmid which encodes the polB gene. We confirmed that the purified protein, of molecular weight 90,000, possesses a 3'----5' exonuclease activity in addition to DNA polymerizing activity in a single polypeptide. Its DNA polymerizing activity was sensitive to the drug aphidicoline, which is a specific and direct inhibitor of the alpha-like DNA polymerases including eukaryotic replicative DNA polymerases. Aphidicolin had no detectable effect on the 3'----5' exonuclease activity. The inhibition by aphidicolin on the polymerizing activity of polymerase II was competitive with respect to dNTP and uncompetitive with respect to template DNA. This mode of action is the same as that on eukaryotic DNA polymerase alpha. The apparent Ki value calculated from Lineweaver-Burk plots was 55.6 microM.  相似文献   

3.
Escherichia coli DNA polymerase III holoenzyme (HE) is the main replicase responsible for replication of the bacterial chromosome. E. coli contains four additional polymerases, and it is a relevant question whether these might also contribute to chromosomal replication and its fidelity. Here, we have investigated the role of DNA polymerase II (Pol II) (polB gene product). Mismatch repair-defective strains containing the polBex1 allele--encoding a polymerase-proficient but exonucleolytically defective Pol II--displayed a mutator activity for four different chromosomal lac mutational markers. The mutator effect was dependent on the chromosomal orientation of the lacZ gene. The results indicate that Pol II plays a role in chromosomal replication and that its role is not equal in leading- versus lagging-strand replication. In particular, the role of Pol II appeared larger in the lagging strand. When combined with dnaQ or dnaE mutator alleles, polBex1 showed strong, near multiplicative effects. The results fit a model in which Pol II acts as proofreader for HE-produced misinsertion errors. A second role of Pol II is to protect mismatched 3' termini against the mutagenic action of polymerase IV (dinB product). Overall, Pol II may be considered a main player in the polymerase trafficking at the replication fork.  相似文献   

4.
The polB gene encoding deoxyribonucleic acid (DNA) polymerase II has been located close to a mutator gene, mutT1, in Escherichia coli. We find the DNA polymerase II prepared from mutT1, strains to be normal in reaction requirements, heat stability, and ability to remove mismatched bases at termini. Recombinants formed from a mutant defective in DNA polymerase II (polB100) and mutT1 are deficient in polymerase II and have the same mutator phenotype as mutT1. Our linkage analysis indicates that mutT1 and polB100 are not isoallelic.  相似文献   

5.
The dinA (damage inducible) gene was previously identified as one of the SOS genes with no known function; it was mapped near the leuB gene, where the polB gene encoding DNA polymerase II was also mapped. We cloned the chromosomal fragment carrying the dinA region from the ordered Escherichia coli genomic library and mapped the dinA promoter precisely on the physical map of the chromosome. The cells that harbored multicopy plasmids with the dinA region expressed very high levels of DNA polymerase activity, which was sensitive to N-ethylmaleimide, an inhibitor of DNA polymerase II. Expression of the polymerase activity encoded by the dinA locus was regulated by SOS system, and the dinA promoter was the promoter of the gene encoding the DNA polymerase. From these data we conclude that the polB gene is identical to the dinA gene and is regulated by the SOS system. The product of the polB (dinA) gene was identified as an 80-kDa protein by the maxicell method.  相似文献   

6.
DNA-DNA interstrand cross-links are the cytotoxic lesions for many chemotherapeutic agents. A plasmid with a single nitrogen mustard (HN2) interstrand cross-link (inter-HN2-pTZSV28) was constructed and transformed into Escherichia coli, and its replication efficiency (RE = [number of transformants from inter-HN2-pTZSV28]/[number of transformants from control]) was determined to be approximately 0.6. Previous work showed that RE was high because the cross-link was repaired by a pathway involving nucleotide excision repair (NER) but not recombination. (In fact, recombination was precluded because the cells do not receive lesion-free homologous DNA.) Herein, DNA polymerase II is shown to be in this new pathway, since the replication efficiency (RE) is higher in a polB+ ( approximately 0. 6) than in a DeltapolB (approximately 0.1) strain. Complementation with a polB+-containing plasmid restores RE to wild-type levels, which corroborates this conclusion. In separate experiments, E. coli was treated with HN2, and the relative sensitivity to killing was found to be as follows: wild type < polB < recA < polB recA approximately uvrA. Because cells deficient in either recombination (recA) or DNA polymerase II (polB) are hypersensitive to nitrogen mustard killing, E. coli appears to have two pathways for cross-link repair: an NER/recombination pathway (which is possible when the cross-links are formed in cells where recombination can occur because there are multiple copies of the genome) and an NER/DNA polymerase II pathway. Furthermore, these results show that some cross-links are uniquely repaired by each pathway. This represents one of the first clearly defined pathway in which DNA polymerase II plays a role in E. coli. It remains to be determined why this new pathway prefers DNA polymerase II and why there are two pathways to repair cross-links.  相似文献   

7.
Summary The polB1 and polA1 polB1 strains of E. coli K-12, wihch are deficient in DNA polymerase II and in DNA polymerases I and II, respectively, were found to have essentially the same sensitivity to anoxic or aerobic X-irradiation as their related wild-type and polA1 strains, respectively. Thus, DNA polymerase II appears to play no major role in the repair of X-ray damage.  相似文献   

8.
DNA replication is frequently hindered because of the presence of DNA lesions induced by endogenous and exogenous genotoxic agents. To circumvent the replication block, cells are endowed with multiple specialized DNA polymerases that can bypass a variety of DNA damage. To better understand the specificity of specialized DNA polymerases to bypass lesions, we have constructed a set of derivatives of Salmonella typhimurium TA1538 harboring plasmids carrying the polB, dinB or mucAB genes encoding Escherichia coli DNA polymerase II, DNA polymerase IV or DNA polymerase RI, respectively, and examined the mutability to 30 chemicals. The parent strain TA1538 possesses CGCGCGCG hotspot sequence for -2 frameshift. Interestingly, the chemicals could be classified into four groups based on the mutagenicity to the derivatives: group I whose mutagenicity was highest in strain YG5161 harboring plasmid carrying dinB; group II whose mutagenicity was almost equally high in strain YG5161 and strain TA98 harboring plasmid carrying mucAB; group III whose mutagenicity was highest in strain TA98; group IV whose mutagenicity was not affected by the introduction of any of the plasmids. Introduction of plasmid carrying polB did not enhance the mutagenicity except for benz[a]anthracene. We also introduced a plasmid carrying polA encoding E. coli DNA polymerase I to strain TA1538. Strikingly, the introduction of the plasmid reduced the mutagenicity of chemicals belonging to groups I, II and III, but not the chemicals of group IV, to the levels observed in the derivative whose SOS-inducible DNA polymerases were all deleted. These results suggest that (i) DNA polymerase IV and DNA polymerase RI possess distinct but partly overlapping specificity to bypass lesions leading to -2 frameshift, (ii) the replicative DNA polymerase, i.e., DNA polymerase III, participates in the mutagenesis and (iii) the enhanced expression of E. coli polA may suppress the access of Y-family DNA polymerases to the replication complex.  相似文献   

9.
DNA polymerase activities in fractionated cell extract of Aeropyrum pernix, a hyperthermophilic crenarchaeote, were investigated. Aphidicolin-sensitive (fraction I) and aphidicolin-resistant (fraction II) activities were detected. The activity in fraction I was more heat stable than that in fraction II. Two different genes (polA and polB) encoding family B DNA polymerases were cloned from the organism by PCR using degenerated primers based on the two conserved motifs (motif A and B). The deduced amino acid sequences from their entire coding regions contained all of the motifs identified in family B DNA polymerases for 3'-->5' exonuclease and polymerase activities. The product of polA gene (Pol I) was aphidicolin resistant and heat stable up to 80 degrees C. In contrast, the product of polB gene (Pol II) was aphidicolin sensitive and stable at 95 degrees C. These properties of Pol I and Pol II are similar to those of fractions II and I, respectively, and moreover, those of Pol I and Pol II of Pyrodictium occultum. The deduced amino acid sequence of A. pernix Pol I exhibited the highest identities to archaeal family B DNA polymerase homologs found only in the crenarchaeotes (group I), while Pol II exhibited identities to homologs found in both euryarchaeotes and crenarchaeotes (group II). These results provide further evidence that the subdomain Crenarchaeota has two family B DNA polymerases. Furthermore, at least two DNA polymerases work in the crenarchaeal cells, as found in euryarchaeotes, which contain one family B DNA polymerase and one heterodimeric DNA polymerase of a novel family.  相似文献   

10.
K C Sitney  M E Budd  J L Campbell 《Cell》1989,56(4):599-605
Three nuclear DNA polymerases have been described in yeast: DNA polymerases I, II, and III. DNA polymerase I is encoded by the POL1 gene and is essential for DNA replication. Since the S. cerevisiae CDC2 gene has recently been shown to have DNA sequence similarity to the active site regions of other known DNA polymerases, but to nevertheless be different from DNA polymerase I, we examined cdc2 mutants for the presence of DNA polymerases II and III. DNA polymerase II was not affected by the cdc2 mutation. DNA polymerase III activity was significantly reduced in the cdc2-1 cell extracts. We conclude that the CDC2 gene encodes yeast DNA polymerase III and that DNA polymerase III, therefore, represents a second essential DNA polymerase in yeast.  相似文献   

11.
DNA polymerase II (Pol II) is regulated as part of the SOS response to DNA damage in Escherichia coli. We examined the participation of Pol II in the response to oxidative damage, adaptive mutation, and recombination. Cells lacking Pol II activity (polB delta 1 mutants) exhibited 5- to 10-fold-greater sensitivity to mode 1 killing by H2O2 compared with isogenic polB+ cells. Survival decreased by about 15-fold when polB mutants containing defective superoxide dismutase genes, sodA and sodB, were compared with polB+ sodA sodB mutants. Resistance to peroxide killing was restored following P1 transduction of polB cells to polB+ or by conjugation of polB cells with an F' plasmid carrying a copy of polB+. The rate at which Lac+ mutations arose in Lac- cells subjected to selection for lactose utilization, a phenomenon known as adaptive mutation, was increased threefold in polB backgrounds and returned to wild-type rates when polB cells were transduced to polB+. Following multiple passages of polB cells or prolonged starvation, a progressive loss of sensitivity to killing by peroxide was observed, suggesting that second-site suppressor mutations may be occurring with relatively high frequencies. The presence of suppressor mutations may account for the apparent lack of a mutant phenotype in earlier studies. A well-established polB strain, a dinA Mu d(Apr lac) fusion (GW1010), exhibited wild-type (Pol II+) sensitivity to killing by peroxide, consistent with the accumulation of second-site suppressor mutations. A high titer anti-Pol II polyclonal antibody was used to screen for the presence of Pol II in other bacteria and in the yeast Saccharomyces cerevisiae. Cross-reacting material was found in all gram-negative strains tested but was not detected in gram-positive strains or in S. cerevisiae. Induction of Pol II by nalidixic acid was observed in E. coli K-12, B, and C, in Shigella flexneri, and in Salmonella typhimurium.  相似文献   

12.
Cloning the polB gene of Escherichia coli and identification of its product   总被引:4,自引:0,他引:4  
Using an in vivo mini-Mu cloning system, we have cloned the polB gene of Escherichia coli into the multicopy plasmid, pUC18. A chromosomal insert of 4.9 kilobases gave 30-40-fold overproduction of DNA polymerase II, and the cells containing the plasmid showed normal growth. The restriction pattern of the polB gene does not match that of either the polA gene or polC gene. Plasmid-directed protein synthesis demonstrates peptides of 99 and 82 kDa which are not expressed by derivative plasmids without DNA polymerase II activity. It appears from in situ gel assays and high performance liquid chromatography that 82- and 55-kDa proteins are derived from the 99-kDa protein by degradation, but all retain activity. DNA polymerase I or DNA polymerase III antibody does not inhibit the synthesis reaction of partially purified DNA polymerase II, but DNA polymerase II antibody does. By the criteria of restriction pattern of the polB gene, molecular weight of the protein, and antibody inhibition of reaction, DNA polymerase II can be demonstrated to be a distinct DNA polymerase.  相似文献   

13.
The polB gene encodes DNA polymerase II in Escherichia coli. The nucleotide sequence shows an open reading frame of 2,304 nucleotides coding for a protein of 88 kD. The protein initiation signal is preceded by a lexA box lying 2 nucleotides from the termination signal of araD, and begins with GUG 75 nucleotides after the termination of araD. The polB gene and the araD gene are transcribed in the same direction. Initiation of protein synthesis was confirmed by peptide sequence. We have also demonstrated that the polB sequence is lacking in some strains. We conclude that DNA polymerase II is not a required protein in the cell. Sequence comparisons show that DNA polymerase II is an alpha-like DNA polymerase.  相似文献   

14.
Alternate pathways of DNA replication in Escherichia coli   总被引:2,自引:0,他引:2  
We have described the pcbA1 mutation which enables E. coli cells to replicate DNA in the absence of a functional dnaE gene product if DNA polymerase I (the polA gene product) is present. The pcbA1 mutation phenotypically suppresses multiple dnaEts and dnaEam alleles. The pcbA1/PolI replication pathway differs from normal in sensitivity to certain DNA-damaging agents such as methylmethane sulfonate (MMS) and a lack of damage-directed mutagenesis. We report here cloning of the pcbA1 gene in a multicopy plasmid. The pcbA1 mutation is detected only in cis; therefore, cloning necessitated gene eviction. The pcbA1 gene lies closely- linked to gyrB. We have demonstrated the physical presence of DNA polymerase I in the replicating holoenzyme complex by immunoblotting using dnaEam strains. We conclude that E. coli has two alternate replisome structures: REP-A, in which DNA polymerase I is the functional synthetic subunit; and REP-E, in which the alpha-subunit, product of the dnaE gene, is functional. To investigate further the role of individual DNA polymerases in replication, we have isolated the polB gene on multicopy plasmids.  相似文献   

15.
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.  相似文献   

16.
Yeast DNA polymerases I and III have been well characterized physically, biochemically, genetically and immunologically. DNA polymerase II is present in very small amounts, and only partially purified preparations have been available for characterization, making comparison with DNA polymerases I and III difficult. Recently, we have shown that DNA polymerases II and III are genetically distinct (Sitney et al., 1989). In this work, we show that polymerase II is also genetically distinct from polymerase I, since polymerase II can be purified in equal amounts from wild-type and mutant strains completely lacking DNA polymerase I activity. Thus, yeast contains three major nuclear DNA polymerases. The core catalytic subunit of DNA polymerase II was purified to near homogeneity using a reconstitution assay. Two factors that stimulate the core polymerase were identified and used to monitor activity during purification and analysis. The predominant species of the most highly purified preparation of polymerase II is 132,000 Da. However, polymerase activity gels suggest that the 132,000-Da form of DNA polymerase II is probably an active proteolytic fragment derived from a 170,000-Da protein. The highly purified polymerase fractions contain a 3'----5'-exonuclease activity that purifies at a constant ratio with polymerase during the final two purification steps. However, DNA polymerase II does not copurify with a DNA primase activity.  相似文献   

17.
The plasmid R6K has been introduced into a number of Escherichia coli polymerase deficient (pol) mutants. In polCts mutants transferred to the nonpermissive temperature to inactivate polymerase III, R6K replicates but the replication products have a density in dye-CsCl gradients intermediate between supercoiled and linear forms. This aberrant replication requires normal cellular levels of polymerase I since it does not occur in polA polCts mutants. Normal R6K replication and maintenance occur in a polA polB polC+ host, however, we cannot tell from our experiments wheather polymerase I or III replicates R6K in polA+ polC+ host. Polymerase II, the polB gene product, has no detectable role in R6K replication.  相似文献   

18.
K Matsumoto  H Takano  C I Kim  H Hirokawa 《Gene》1989,84(2):247-255
Bacteriophage M2 encodes its own DNA polymerase which catalyses the formation of a primer protein-5'dAMP initiation complex for DNA replication. To understand the relation of structure to function of this 'protein-priming DNA polymerase', we have determined the nucleotide sequence of the M2 DNA polymerase-encoding gene (gene G). The deduced 572-amino acid sequence of M2 DNA polymerase shows 82.3% overall homology to that of phi 29 DNA polymerase. A homology search with the mutation data matrix revealed that six segments (A-F, from the N terminus) of M2 and phi 29 DNA polymerases are homologous with the sequence of Escherichia coli DNA polymerase I (PolI). Segments D and F coincide with the conserved segments of many other DNA polymerases. Therefore, M2 and phi 29 DNA polymerases have structural features, at least in the conserved segments, similar to those of PolI and other DNA polymerases. Based on the homology with PolI and the location of the mutations for aphidicolin resistance and nucleoside analog resistance of M2, phi 29 and herpes simplex virus type-1 DNA polymerases, we propose that segments A-D of the M2 and phi 29 DNA polymerases constitute a structure which forms the cleft for holding template DNA and that segment D is a region for interacting with dNTP.  相似文献   

19.
The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli.  相似文献   

20.
We examined the effects of mutations in the polA (encoding DNA polymerase I) and polB (DNA polymerase II) genes on inducible and constitutive stable DNA replication (iSDR and cSDR, respectively), the two alternative DNA replication systems of Escherichia coli. The polA25::miniTn10spc mutation severely inactivated cSDR, whereas polA1 mutants exhibited a significant extent of cSDR. cSDR required both the polymerase and 5'-->3' exonuclease activities of DNA polymerase I. A similar requirement for both activities was found in replication of the pBR322 plasmid in vivo. DNA polymerase II was required neither for cSDR nor for iSDR. In addition, we found that the lethal combination of an rnhA (RNase HI) and a polA mutation could be suppressed by the lexA(Def) mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号