首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein-protein interaction (PPI) networks contain a large amount of useful information for the functional characterization of proteins and promote the understanding of the complex molecular relationships that determine the phenotype of a cell. Recently, large human interaction maps have been generated with high throughput technologies such as the yeast two-hybrid system. However, they are static and incomplete and do not provide immediate clues about the cellular processes that convert genetic information into complex phenotypes. Refined multiple-aspect PPI screening and confirmation strategies will have to be put in place to increase the validity of interaction maps. Integration of interaction data with other qualitative and quantitative information (e.g. protein expression or localization data), will be required to construct networks of protein function that reflect dynamic processes in the cell. In this way, combined PPI networks can become valuable resources for a systems-level understanding of cellular processes and complex phenotypes.  相似文献   

2.
3.
Many genetic traits have complex modes of inheritance; they may exhibit incomplete or age-dependent penetrance or fail to show any clear Mendelian inheritance pattern. As primary linkage maps for the human genome near completion, it is becoming increasingly possible to map these traits. Prior to undertaking a linkage study, it is important to consider whether the pedigrees available for the proposed study are likely to provide sufficient information to demonstrate linkage, assuming a linked marker is tested. In the current paper, we describe a computer simulation method to estimate the power of a proposed study to detect linkage for a complex genetic trait, given a hypothesized genetic model for the trait. Our method simulates trait locus genotypes consistent with observed trait phenotypes, in such a way that the probability to detect linkage can be estimated by sample statistics of the maximum lod score distribution. The method uses terms available when calculating the likelihood of the trait phenotypes for the pedigree and is applicable to any trait determined by one or a few genetic loci; individual-specific environmental effects can also be dealt with. Our method provides an objective answer to the question, Will these pedigrees provide sufficient information to map this complex genetic trait?  相似文献   

4.
The use of microorganisms for remediation of contaminated soil and groundwater has been limited by our incomplete understanding of how environmental variables influence the activities of microorganisms. Recent research has increased our knowledge of the mechanisms whereby environmental variables can regulate microbial processes, including gene transfer and expression. This review examines factors that influence transfer of genetic material between bacteria in the environmental (evolution of genotypes) and utilization of genetic capabilities (expression of phenotypes).  相似文献   

5.
6.
Maternal factors control development prior to the activation of the embryonic genome. In vertebrates, little is known about the molecular mechanisms by which maternal factors regulate embryonic development. To understand the processes controlled by maternal factors and identify key genes involved, we embarked on a maternal-effect mutant screen in the zebrafish. We identified 68 maternal-effect mutants. Here we describe 15 mutations in genes controlling processes prior to the midblastula transition, including egg development, blastodisc formation, embryonic polarity, initiation of cell cleavage, and cell division. These mutants exhibit phenotypes not previously observed in zygotic mutant screens. This collection of maternal-effect mutants provides the basis for a molecular genetic analysis of the maternal control of embryogenesis in vertebrates.  相似文献   

7.
Abstract: The genetic similarity between humans and nonhuman primates makes nonhuman primates uniquely suited as models for genetic research on complex physiological and behavioral phenotypes. By comparison with human subjects, nonhuman primates, like other animal models, have several advantages for these types of studies: 1) constant environmental conditions can be maintained over long periods of time, greatly increasing the power to detect genetic effects; 2) different environmental conditions can be imposed sequentially on individuals to characterize genotype-environment interactions; 3) complex pedigrees that are much more powerful for genetic analysis than typically available human pedigrees can be generated; 4) genetic hypotheses can be tested prospectively by selective matings; and 5) essential invasive and terminal experiments can be conducted. Limitations of genetic research with nonhuman primates include cost and availability. However, the ability to manipulate both genetic and environmental factors in captive primate populations indicates the promise of genetic research with these important animal models for illuminating complex disease processes. The utility of nonhuman primates for biomedical research on human health problems is illustrated by examples concerning the use of baboons in studies of osteoporosis, alcohol metabolism, and lipoproteins.  相似文献   

8.
Flatfishes are a group of teleosts of high commercial and environmental interest, whose biology is still poorly understood. The recent rapid development of different 'omic' technologies is, however, enhancing the knowledge of the complex genetic control underlying different physiological processes of flatfishes. This review describes the different functional genomic approaches and resources currently available for flatfish research and summarizes different areas where microarray-based gene expression analysis has been applied. The increase in genome sequencing data has also allowed the construction of genetic linkage maps in different flatfish species; these maps are invaluable for investigating genome organization and identifying genetic traits of commercial interest. Despite the significant progress in this field, the genomic resources currently available for flatfish are still scarce. Further intensive research should be carried out to develop larger genomic sequence databases, high-density microarrays and, more detailed, complete linkage maps, using second-generation sequencing platforms. These tools will be crucial for further expanding the knowledge of flatfish physiology, and it is predicted that they will have important implications for wild fish population management, improved fish welfare and increased productivity in aquaculture.  相似文献   

9.
Kaput J  Dawson K 《Mutation research》2007,622(1-2):19-32
Nutrigenomics promises personalized nutrition and an improvement in preventing, delaying, and reducing the symptoms of chronic diseases such as diabetes. Nutritional genomics is the study of how foods affect the expression of genetic information in an individual and how an individual's genetic makeup affects the metabolism and response to nutrients and other bioactive components in food. The path to those promises has significant challenges, from experimental designs that include analysis of genetic heterogeneity to the complexities of food and environmental factors. One of the more significant complications in developing the knowledge base and potential applications is how to analyze high-dimensional datasets of genetic, nutrient, metabolomic (clinical), and other variables influencing health and disease processes. Type 2 diabetes mellitus (T2DM) is used as an illustration of the challenges in studying complex phenotypes with nutrigenomics concepts and approaches.  相似文献   

10.
When confronted with complex visual scenes in daily life, how do we know which visual information represents our own hand? We investigated the cues used to assign visual information to one''s own hand. Wrist tendon vibration elicits an illusory sensation of wrist movement. The intensity of this illusion attenuates when the actual motionless hand is visually presented. Testing what kind of visual stimuli attenuate this illusion will elucidate factors contributing to visual detection of one''s own hand. The illusion was reduced when a stationary object was shown, but only when participants knew it was controllable with their hands. In contrast, the visual image of their own hand attenuated the illusion even when participants knew that it was not controllable. We suggest that long-term knowledge about the appearance of the body and short-term knowledge about controllability of a visual object are combined to robustly extract our own body from a visual scene.  相似文献   

11.
12.
The haploid social soil amoeba Dictyostelium discoideum has been established as a host model for several pathogens including Pseudomonas aeruginosa, Cryptococcus neoformans, Mycobacterium spp. and Legionella pneumophila. The research areas presently pursued include (i) the use of Dictyostelium wild-type cells as screening system for virulence of extracellular and intracellular pathogens and their corresponding mutants, (ii) the use of Dictyostelium mutant cells to identify genetic host determinants of susceptibility and resistance to infection and (iii) the use of reporter systems in Dictyostelium cells which allow the dissection of the complex host-pathogen cross-talk. The body of information presented in this review demonstrates that the availability of host cell markers, the knowledge of cell signalling pathways, the completion of the genome sequencing project and the tractability for genetic studies qualifies Dictyostelium for the study of fundamental cellular processes of pathogenesis.  相似文献   

13.
《Organogenesis》2013,9(2):42-47
Rapid progress in genome research creates a wealth of information on the functional annotation of mammalian genome sequences. However, as we accumulate large amounts of scientific information we are facing problems of how to integrate and relate the data produced by various genomic approaches. Here, we propose a novel concept of an organ atlas where diverse data from expression maps to histological findings to mutant phenotypes can be queried, compared and visualized in the context of a three dimensional reconstruction of the organ. We will seek proof of concept for the organ atlas by elucidating genetic pathways involved in development and pathophysiology of the kidney. Such a kidney atlas may provide a paradigm for a new systems-biology approach in functional genome research aimed at understanding the genetic basis of organ development, physiology and disease.  相似文献   

14.
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.  相似文献   

15.
The strength of the rat as a model organism lies in its utility in pharmacology, biochemistry and physiology research. Data resulting from such studies is difficult to represent in databases and the creation of user-friendly data mining tools has proved difficult. The Rat Genome Database has developed a comprehensive ontology-based data structure and annotation system to integrate physiological data along with environmental and experimental factors, as well as genetic and genomic information. RGD uses multiple ontologies to integrate complex biological information from the molecular level to the whole organism, and to develop data mining and presentation tools. This approach allows RGD to indicate not only the phenotypes seen in a strain but also the specific values under each diet and atmospheric condition, as well as gender differences. Harnessing the power of ontologies in this way allows the user to gather and filter data in a customized fashion, so that a researcher can retrieve all phenotype readings for which a high hypoxia is a factor. Utilizing the same data structure for expression data, pathways and biological processes, RGD will provide a comprehensive research platform which allows users to investigate the conditions under which biological processes are altered and to elucidate the mechanisms of disease.  相似文献   

16.
Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring.  相似文献   

17.
Proteomic dissection of plant development   总被引:2,自引:0,他引:2  
Plant development is controlled by complex endogenous genetic programs and responses to environmental cues. Proteome analyses have recently been introduced to plant biology to identify proteins instrumental in these developmental processes. To date most plant proteome studies have been employed to generate reference maps of the most abundant soluble proteins of plant organs at a defined developmental stage. However, proteomics is now also utilized for genetic studies comparing the proteomes of different plant genotypes, for physiological studies analyzing the influences of exogenous signals on a particular plant organ, and developmental studies investigating proteome changes during development. Technical advances are now beginning to allow a proteomic dissection of individual cell types, thus greatly increasing the information revealed by proteome analyses.  相似文献   

18.
19.
In traditional mutant screening approaches, genetic variants are tested for one or a small number of phenotypes. Once bona fide variants are identified, they are typically subjected to a limited number of secondary phenotypic screens. Although this approach is excellent at finding genes involved in specific biological processes, the lack of wide and systematic interrogation of phenotype limits the ability to detect broader syndromes and connections between genes and phenotypes. It could also prevent detection of the primary phenotype of a mutant. As part of a systems biology approach to understand plastid function, large numbers of Arabidopsis thaliana homozygous T-DNA lines are being screened with parallel morphological, physiological, and chemical phenotypic assays (www.plastid.msu.edu). To refine our approaches and validate the use of this high-throughput screening approach for understanding gene function and functional networks, approximately 100 wild-type plants and 13 known mutants representing a variety of phenotypes were analyzed by a broad range of assays including metabolite profiling, morphological analysis, and chlorophyll fluorescence kinetics. Data analysis using a variety of statistical approaches showed that such industrial approaches can reliably identify plant mutant phenotypes. More significantly, the study uncovered previously unreported phenotypes for these well-characterized mutants and unexpected associations between different physiological processes, demonstrating that this approach has strong advantages over traditional mutant screening approaches. Analysis of wild-type plants revealed hundreds of statistically robust phenotypic correlations, including metabolites that are not known to share direct biosynthetic origins, raising the possibility that these metabolic pathways have closer relationships than is commonly suspected.  相似文献   

20.
Respiration rates of bacterial cultures can be a powerful tool in gauging the effects of genetic manipulation and environmental changes affecting overall metabolism. We present an optical method for measuring respiration rates using a robust phosphorescence lifetime-based sensor and off-the-shelf technology. This method was tested with the facultative methylotroph Methylobacterium extorquens AM1 to demonstrate subtle mutant phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号