首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small GTP-binding proteins of the highly conserved Rho family act as molecular switches regulating cell signalling, cytoskeletal organization and vesicle trafficking in eukaryotic cells. Here we show that in the dimorphic plant pathogenic fungus Ustilago maydis deletion of either cdc42 or rac1 results in loss of virulence but does not interfere with viability. Cells deleted for cdc42 display a cell separation defect during budding. We have previously shown that the Rho-specific guanine nucleotide exchange factor (GEF) Don1 is required for cell separation in U. maydis. Expression of constitutive active Cdc42 rescues the phenotype of don1 mutant cells indicating that Don1 triggers cell separation by activating Cdc42. Deletion of rac1 affects cellular morphology and interferes with hyphal growth, whereas overexpression of wild-type Rac1 induces filament formation in haploid cells. This indicates that Rac1 is both necessary and sufficient for the dimorphic switch from budding to hyphal growth. Cdc42 and Rac1 share at least one common essential function because depletion of both Rac1 and Cdc42 is lethal. Expression of constitutively active Rac1(Q61L) is lethal and results in swollen cells with a large vacuole. The morphological phenotype, but not lethality is suppressed in cla4 mutant cells suggesting that the PAK family kinase Cla4 acts as a downstream effector of Rac1.  相似文献   

2.
Septum formation is a crucial step of cytokinesis in fungi. In the basidiomycete Ustilago maydis, the germinal centre kinase Don3 triggers initiation of a secondary septum necessary for cell separation after cytokinesis. Here we show that oligomerization of Don3 via a putative coiled-coil domain is critical for secondary septum formation. Within the Don3 sequence we detected a characteristic C-terminal sequence motif (T-motif), which determines the subcellular localization of Don3 but is not required for regulation of cell separation. This motif defines a novel family of fungal protein kinases including Sid1p, an essential component of the septation initiation network (SIN) in Schizosaccharomyces pombe. Using the yeast two-hybrid system we isolated the Don3-interacting protein Dip1, which is similar to S. pombe Cdc14p, another member of the SIN. Remarkably, deletion of dip1 did not interfere with cytokinesis in U. maydis, but both dip1 and don3 mutants were affected in nuclear envelope breakdown (NEBD) during mitosis. This phenotype has already been described for mutants, which lack the small GTPase Ras3, the U. maydis homologue of the SIN component Spg1p. We propose that the Don3 kinase exerts a dual function in the regulation of cell separation and NEBD.  相似文献   

3.
The highly conserved GTP-binding proteins Cdc42 and Rac1 regulate cytokinesis, establishment of cell polarity and vesicular trafficking. In the dimorphic fungus Ustilago maydis , Rac1 is required for cell polarity and budding, while Cdc42 is essential for cell separation during cytokinesis. The same cell separation defect is also observed in mutants that lack Don1, a guanine nucleotide exchange factor (GEF) of the Dbl family. We have generated a series of chimeric GTP-binding proteins consisting of different portions of Cdc42 and Rac1. In vivo complementation analysis revealed that a short region encompassing amino acids 41–56 determines signalling specificity. Remarkably, substitution of a single amino acid at position 56 within this specificity domain is sufficient to confer Cdc42 function to Rac1 in vivo . Expression of Rac1W56F in Δ cdc42 mutant cells resulted in complementation of the cell separation defect. In vitro GDP/GTP exchange assays demonstrated that the Dbl family GEF Don1 is highly specific for Cdc42 and cannot activate Rac1. However, if Rac1W56F is used as a substrate, Don1 is able to stimulate GDP/GTP exchange. Together these data indicate that activation by the GEF Don1 is an important determinant of Cdc42-specific signalling in vivo .  相似文献   

4.
Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently.  相似文献   

5.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

6.
The transforming growth factor beta (TGFbeta) plays an important role in cell growth and differentiation. However, the intracellular signaling pathways through which TGFbeta inhibits skeletal myogenesis remain largely undefined. By measuring GTP-loading of Rho GTPases and the organization of the F-actin cytoskeleton and the plasma membrane, we analyzed the effect of TGFbeta addition on the activity of three GTPases, Rac1, Cdc42Hs and RhoA. We report that TGFbeta activates Rac1 and Cdc42Hs in skeletal muscle cells, two GTPases previously described to inhibit skeletal muscle cell differentiation whereas it inactivates RhoA, a positive regulator of myogenesis. We further show that TGFbeta activates the C-jun N-terminal kinases (JNK) pathway in myoblastic cells through Rac1 and Cdc42Hs GTPases. We propose that the activation of Rho family proteins Rac1 and Cdc42Hs which subsequently regulate JNK activity participates in the inhibition of myogenesis by TGFbeta.  相似文献   

7.
Insulin-like growth factor I receptor (IGFR) plays an important role in cell growth and transformation. We dissected the downstream signaling pathways of an oncogenic variant of IGFR, Gag-IGFR, called NM1. Loss of function mutants of NM1, Phe-1136 and dS2, that retain kinase activity but are attenuated in their transforming ability were used to identify signaling pathways that are important for transformation of NIH 3T3 cells. MAPK, phospholipase C gamma, and Stat3 were activated to the same extent by NM1 and its two mutants, suggesting that activation of these pathways, individually or in combination, was not sufficient for NM1-induced cell transformation. The mutant dS2 has decreased IRS-1 phosphorylation levels and IRS-1-associated phosphatidylinositol 3'-kinase activity, suggesting that this impairment may be in part responsible for the defectiveness of dS2. We show that Rho family members, RhoA, Rac1, and Cdc42 are activated by NM1, and this activation, particularly RhoA and Cdc42, is attenuated in both mutants of NM1. Dominant negative mutants of Rho, Rac, and Cdc42 inhibited NM1-induced cell transformation, as measured by focus and colony forming ability. Dominant negative Rho most potently inhibited the focus forming activity, whereas Cdc42 was most effective in inhibiting the colony forming ability of NM1-expressing cells. Conversely, constitutively activated (ca) Rho is more effective than ca Rac or ca Cdc42 in rescuing the focus forming ability of the mutants. By contrast, ca Cdc42 is most effective in rescuing the colony forming ability of both mutants.  相似文献   

8.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

9.
The current knowledge assigns a crucial role to the Rho GTPases family (Rho, Rac, Cdc42) in the complex transductive pathway leading to skeletal muscle cell differentiation. Their exact function in myogenesis, however, remains largely undefined. The protein toxin CNF1 was herein employed as a tool to activate Rho, Rac and Cdc42 in the myogenic cell line C2C12. We demonstrated that CNF1 impaired myogenesis by affecting the muscle regulatory factors MyoD and myogenin and the structural protein MHC expressions. This was principally driven by Rac/Cdc42 activation whereas Rho apparently controlled only the fusion process. More importantly, we proved that a controlled balance between Rho and Rac/Cdc42 activation/deactivation state was crucial for the correct execution of the differentiation program, thus providing a novel view for the role of Rho GTPases in muscle cell differentiation. Also, the use of Rho hijacking toxins can represent a new strategy to pharmacologically influence the differentiative process.  相似文献   

10.
E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120ctn interacts with E-cadherin, because p120ctn localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Rho family GTPases; catenin; polarity; sorting; actin  相似文献   

11.
Shear stress induces endothelial polarization and migration in the direction of flow accompanied by extensive remodeling of the actin cytoskeleton. The GTPases RhoA, Rac1, and Cdc42 are known to regulate cell shape changes through effects on the cytoskeleton and cell adhesion. We show here that all three GTPases become rapidly activated by shear stress, and that each is important for different aspects of the endothelial response. RhoA was activated within 5 min after stimulation with shear stress and led to cell rounding via Rho-kinase. Subsequently, the cells respread and elongated within the direction of shear stress as RhoA activity returned to baseline and Rac1 and Cdc42 reached peak activation. Cell elongation required Rac1 and Cdc42 but not phosphatidylinositide 3-kinases. Cdc42 and PI3Ks were not required to establish shear stress-induced polarity although they contributed to optimal migration speed. Instead, Rho and Rac1 regulated directionality of cell movement. Inhibition of Rho or Rho-kinase did not affect the cell speed but significantly increased cell displacement. Our results show that endothelial cells reorient in response to shear stress by a two-step process involving Rho-induced depolarization, followed by Rho/Rac-mediated polarization and migration in the direction of flow.  相似文献   

12.
Ras family small GTPases play a critical role in malignant transformation, and Rho subfamily members contribute significantly to this process. Anchorage-independent growth and the ability to avoid detachment-induced apoptosis (anoikis) are hallmarks of transformed epithelial cells. In this study, we have demonstrated that constitutive activation of Cdc42 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. We showed that activated Cdc42 stimulates the ERK, JNK, and p38 MAPK pathways in suspension condition; however, inhibition of these signaling does not affect Cdc42-stimulated cell survival. However, we demonstrated that inhibition of phosphatidylinositol 3-kinase (PI3K) pathway abolishes the protective effect of Cdc42 on anoikis. Taking advantage of a double regulatory expression system, we also showed that Cdc42-stimulated cell survival in suspension condition is, at least in part, mediated by Rac1. We also provide evidence for a positive feedback loop involving Rac1 and PI3K. In addition, we show that the survival functions of both constitutively active Cdc42 and Rac1 GTPases are abrogated by Latrunculin B, an actin filament-depolymerizing agent, implying an important role for the actin cytoskeleton in mediating survival signaling activated by Cdc42 and Rac1. Together, our results indicate a role for Cdc42 in anchorage-independent survival of epithelial cells. We also propose that this survival function depends on a positive feedback loop involving Rac1 and PI3K.  相似文献   

13.
The Rho family of GTPases plays key roles in the regulation of cell motility and morphogenesis. They also regulate protein kinase cascades, gene expression, and cell cycle progression. This multiplicity of roles requires that the Rho GTPases interact with a wide variety of downstream effector proteins. An understanding of their functions at a molecular level therefore requires the identification of the entire set of such effectors. Towards this end, we performed a two-hybrid screen using the TC10 GTPase as bait and identified a family of putative effector proteins related to MSE55, a murine stromal and epithelial cell protein of 55 kDa. We have named this family the Borg (binder of Rho GTPases) proteins. Complete open reading frames have been obtained for Borg1 through Borg3. We renamed MSE55 as Borg5. Borg1, Borg2, Borg4, and Borg5 bind both TC10 and Cdc42 in a GTP-dependent manner. Surprisingly, Borg3 bound only to Cdc42. An intact CRIB (Cdc42, Rac interactive binding) domain was required for binding. No interaction of the Borgs with Rac1 or RhoA was detectable. Three-hemagglutinin epitope (HA(3))-tagged Borg3 protein was mostly cytosolic when expressed ectopically in NIH 3T3 cells, with some accumulation in membrane ruffles. The phenotype induced by Borg3 was reminiscent of that caused by an inhibition of Rho function and was reversed by overexpression of Rho. Surprisingly, it was independent of the ability to bind Cdc42. Borg3 also inhibited Jun kinase activity by a mechanism that was independent of Cdc42 binding. HA(3)-Borg3 expression caused substantial delays in the spreading of cells on fibronectin surfaces after replating, and the spread cells lacked stress fibers. We propose that the Borg proteins function as negative regulators of Rho GTPase signaling.  相似文献   

14.
Rho GTPases including Rho, Rac and Cdc42 are involved in cell morphogenesis by inducing specific types of actin cytoskeleton and alignment and stabilization of microtubules. Previous studies suggest that they also regulate cell cycle progression; Rho, Rac and Cdc42 regulate the G1-S progression and Rho controls cytokinesis. However, a role of Rho GTPases in nuclear division has not been definitely shown. We have recently found that Cdc42 and its downstream effector mDia3 are involved in bi-orientation and stabilization of spindle microtubules attachment to kinetochores and regulate chromosome alignment and segregation. Here, we discuss how this is coordinated with other events in mitosis, particularly, with the action of Rho in cytokinesis and how attachment of microtubules to kinetochores is achieved and stabilized. We also discuss redundancy of Cdc42 and Cdc42-related GTPase(s) and potential mechanisms of chromosome instability in cancer  相似文献   

15.
16.
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the co-ordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bacl, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.  相似文献   

17.
18.
Using biochemical assays to determine the activation state of Rho-like GTPases, we show that the guanine nucleotide exchange factor Tiam1 functions as a specific activator of Rac but not Cdc42 or Rho in NIH3T3 fibroblasts. Activation of Rac by Tiam1 induces an epithelial-like morphology with functional cadherin-based adhesions and inhibits migration of fibroblasts. This epithelial phenotype is characterized by Rac-mediated effects on Rho activity. Transient PDGF-induced as well as sustained Rac activation by Tiam1 or V12Rac downregulate Rho activity. We found that Cdc42 also downregulates Rho activity. Neither V14Rho or N19Rho affects Rac activity, suggesting unidirectional signaling from Rac towards Rho. Downregulation of Rho activity occurs independently of Rac- induced cytoskeletal changes and cell spreading. Moreover, Rac effector mutants that are defective in mediating cytoskeleton changes or Jun kinase activation both downregulate Rho activity, suggesting that neither of these Rac signaling pathways are involved in the regulation of Rho. Restoration of Rho activity in Tiam1-expressing cells by expression of V14Rho results in reversion of the epithelioid phenotype towards a migratory, fibroblastoid morphology. We conclude that Rac signaling is able to antagonize Rho activity directly at the GTPase level, and that the reciprocal balance between Rac and Rho activity determines cellular morphology and migratory behavior in NIH3T3 fibroblasts.  相似文献   

19.
Maintenance of intestinal epithelial barrier functions is crucial to prevent systemic contamination by microbes that penetrate from the gut lumen. GTPases of the Rho-family such as RhoA, Rac1, and Cdc42 are known to be critically involved in the regulation of intestinal epithelial barrier functions. However, it is still unclear whether inactivation or activation of these GTPases exerts barrier protection or not. We tested the effects of Rho GTPase activities on intestinal epithelial barrier functions by using the bacterial toxins cytotoxic necrotizing factor 1 (CNF-1), toxin B, C3 transferase (C3 TF), and lethal toxin (LT) in an in vitro model of the intestinal epithelial barrier. Incubation of cell monolayers with CNF-1 for 3 h induced exclusive activation of RhoA whereas Rac1 and Cdc42 activities were unchanged. As revealed by FITC-dextran flux and measurements of transepithelial electrical resistance (TER) intestinal epithelial permeability was significantly increased under these conditions. Inhibition of Rho kinase via Y27632 blocked barrier destabilization of CNF-1 after 3 h. In contrast, after 24 h of incubation with CNF-1 only Rac1 and Cdc42 but not RhoA were activated which resulted in intestinal epithelial barrier stabilization. Toxin B to inactivate RhoA, Rac1, and Cdc42 as well as Rac1 inhibitor LT increased intestinal epithelial permeability. Similar effects were observed after inhibition of RhoA/Rho kinase signaling by C3 TF or Y27632. Taken together, these data demonstrate that both activation and inactivation of RhoA signaling increased paracellular permeability whereas activation of Rac1 and Cdc42 correlated with stabilized barrier functions.  相似文献   

20.
Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A Ras(H40C;G12V) double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated Ras(G12V)-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42(G12V) was Rac1 dependent. Cdc42(G12V)-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42(G12V)-induced outgrowth did not need Ras or PI 3-kinase activity. Active Rho(G14V) reduced outgrowth promoted by Ras(G12V). Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号