首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of propranolol on the glycogen autophagy in newborn rat hepatocytes were studied by using biochemical determinations, electron microscopy and morphometric analysis. Propranolol lowered the liver cyclic AMP and cyclic AMP-dependent protein kinase activity. It also decreased the formyl-methionyl-leucyl-phenylalanine (FMLP)-inhibitable Ca2+-ATPase activity including lysosomal calcium uptake pump. The normal postnatal increase in the volume of autophagic vacuoles and the activity of acid glycogen-hydrolyzing alpha glucosidase were inhibited. Also, the degradation of glycogen inside the autophagic vacuoles was apparently inhibited. The activity of acid mannose 6-phosphatase was increased. These findings indicate that propranolol influences several steps in the sequence of events leading to the breakdown of glycogen in the autophagic vacuoles of newborn rat hepatocytes. This supports our previous studies suggesting that cyclic AMP regulates glycogen autophagy.  相似文献   

2.
Glycogen autophagy in newborn rat hepatocytes was studied by using enzyme determinations and electron microscopy. Cyclic AMP induced glycogen autophagy in these cells. Glycogen-hydrolyzing acid glucosidase activity increased whereas acid mannose 6-phosphatase activity decreased in the liver of these animals. Parenteral glucose, which prevents postnatal glucagon secretion and tissue cyclic AMP elevation, and propranolol which antagonizes cyclic AMP, inhibited glycogen autophagy. Glucosidase activity decreased and phosphatase activity increased. These findings raise the possibility that cyclic AMP-induced autophagic mechanisms in newborn rat hepatocytes are associated with changes in the activity of acid mannose 6-phosphatase.  相似文献   

3.
The effects of glucagon, adrenalin or rapamycin on glycogen autophagy in the liver and heart of newborn rats were studied using biochemical determinations and electron microscopy. Glucagon or adrenalin increased autophagic activity in the hepatocytes and myocardiocytes, glycogen-hydrolyzing acid glucosidase activity in the liver and heart and degradation of glycogen inside the autophagic vacuoles. Glucagon or adrenalin also increased the maltose-hydrolyzing acid glucosidase activity in the liver, but not in the heart. Similar effects were produced in the newborn heart by rapamycin. These observations support previous studies suggesting that the cellular machinery which controls glycogen autophagy in the liver and heart of newborn animals, is regulated by the cyclic AMP and the mTOR pathways.  相似文献   

4.
5.
Hormonal regulation of glycogen metabolism in neonatal rat liver   总被引:5,自引:3,他引:2  
1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver.  相似文献   

6.
Incubation of adipocytes in glucose-free medium with adrenocorticotrophic hormone, epinephrine, isoproterenol, or norepinephrine increased the concentration of cyclic AMP and the percentage of phosphorylase a activity, and decreased the percentage of glycogen synthase I activity. Glucose was essentially without effect on glycogen synthase or phosphorylase in either the presence or absence of epinephrine. Although glucose potentiated the action of insulin to activate glycogen synthase, the hexose did not enhance the effectiveness of insulin in the presence of epinephrine. Likewise, glucose did not increase the ability of insulin to oppose the activation of phosphorylase by epinephrine.The activation of glycogen synthase by insulin was not associated with a decrease in the concentration of cyclic AMP. Insulin partially blocked the rise in cyclic AMP due to isoproterenol, adrenocorticotrophic hormone, and norepinephrine. The maximum effects of isoproterenol on glycogen synthase and phosphorylase were observed when the concentration of cyclic AMP was increased twofold. However, insulin clearly opposed the changes in enzyme activity produced by isoproterenol (and also adrenocorticotrophic hormone, epinephrine and norepinephrine) even though concentrations of cyclic AMP were still increased three- to fourfold. Nicotinic acid opposed the increases in cyclic AMP due to adrenocorticotrophic hormone, isoproterenol and norepinephrine to the same extent as insulin; however, nicotinic acid was ineffective in opposing the activation of phosphorylase and inactivation of glycogen synthase produced by these agents. Thus, it is unlikely that the effects of insulin on glycogen synthase and phosphorylase result from an action of the hormone to decrease the concentration of cyclic AMP.  相似文献   

7.
The mechanism for glycogen synthesis stimulation produced by adenosine, fructose, and glutamine has been investigated. We have analyzed the relationship between adenine nucleotides and glycogen metabolism rate-limiting enzymes upon hepatocyte incubation with these three compounds. In isolated hepatocytes, inhibition of AMP deaminase with erythro-9-(2-hydroxyl-3nonyl)adenine further increases the accumulation of AMP and the activation of glycogen synthase and phosphorylase by fructose. This ketose does not increase cyclic AMP or the activity of cyclic AMP-dependent protein kinase. Adenosine raises AMP and ATP concentration. This nucleotide also activates glycogen synthase and phosphorylase by covalent modification. The correlation coefficient between AMP and glycogen synthase activity is 0.974. Nitrobenzylthioinosine, a transport inhibitor of adenosine, blocks (by 50%) the effect of the nucleoside on AMP formation and glycogen synthase but not on phosphorylase. 2-Chloroadenosine and N6-phenylisopropyladenosine, nonmetabolizable analogues of adenosine, activate phosphorylase (6-fold) without increasing the concentration of adenine nucleotides or the activity of glycogen synthase. Cyclic AMP is not increased by adenosine in hepatocytes from starved rats but is in cells from fed animals. [Ethylenebis (oxyethylenenitrilo)]tetraacetic acid (EGTA) blocks by 60% the activation of phosphorylase by adenosine but not that of glycogen synthase. Glutamine also increases AMP concentration and glycogen synthase and phosphorylase activities, and these effects are blocked by 6-mercaptopurine, a purine synthesis inhibitor. Neither adenosine nor glutamine increases glucose 6-phosphate. It is proposed that the observed efficient glycogen synthesis from fructose, adenosine, and glutamine is due to the generation of AMP that activates glycogen synthase probably through increases in synthase phosphatase activity. It is also concluded that the activation of phosphorylase by the above-mentioned compounds can be triggered by metabolic changes.  相似文献   

8.
In liver cells isolated from fed female rats, glucagon (290nM) increased adenosine 3':5'-monophosphate (cyclic AMP) content and decreased cyclic AMP binding 30 s after addition of hormones. Both returned to control values after 10 min. Glucagon also stimulated cyclic AMP-independent protein kinase activity at 30 s and decreased protein kinase activity assayed in the presence of 2 muM cyclic AMP at 1 min. Glucagon increased the levels of glycogen phosphorylase a, but there was no change in total glycogen phosphorylase activity. Glucagon increased glycogen phosphorylase a at concentrations considerably less than those required to affect cyclic AMP and protein kinase. The phosphodiesterase inhibitor, 1-methyl-3-isobutyl xanthine, potentiated the action of glucagon on all variables, but did not increase the maximuM activation of glycogen phosphorylase. Epinephrine (1muM) decreased cyclic AMP binding and increased glycogen phosphorylase a after a 1-min incubation with cells. Although 0.1 muM epinephrine stimulated phosphorylase a, a concentration of 10 muM was required to increase protein kinase activity. 1-Methyl-3-isobutyl xanthine (0.1 mM) potentiated the action of epinephrine on cyclic AMP and protein kinase. (-)-Propranolol (10muM) completely abolished the changes in cyclic AMP binding and protein kinase due to epinephrine (1muM) in the presence of 0.1mM 1-methyl-3-isobutyl xanthine, yet inhibited the increase in phosphorylase a by only 14 per cent. Phenylephrine (0.1muM) increased glycogen phosphorylase a, although concentrations as great as 10 muM failed to affect cyclic AMP binding or protein kinase in the absence of phosphodiesterase inhibitor. Isoproterenol (0.1muM) stimulated phosphorylase and decreased cyclic AMP binding, but only a concentration of 10muM increased protein kinase. 1-Methyl-3-isobutyl xanthine potentiated the action of isoproterenol on cyclic AMP binding and protein kinase, and propranolol reduced the augmentation of glucose release and glycogen phosphorylase activity due to isoproterenol. These data indicate that both alpha- and beta-adrenergic agents are capable of stimulating glycogenolysis and glycogen phosphorylase a in isolated rat liver cells. Low concentrations of glucagon and beta-adrenergic agonists stimulate glycogen phosphorylase without any detectable increase in cyclic AMP or protein kinase activity. The effects of alpha-adrenergic agents appear to be completely independent of changes in cyclic AMP protein kinase activity.  相似文献   

9.
Changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase levels were examined during development in the rat. In liver, cyclic AMP increased prenatally and for the first 10 postnatal days; protein kinase levels (both cyclic AMP-dependent and independent activities) were high prenatally and declined during the first 10 postnatal days. Both phosphorylase and phosphorylase kinase in liver increased rapidly prenatally and more slowly postnatally. In heart and skeletal muscle cyclic AMP increased prenatally and for the first 10 days after birth, then declined. Protein kinase in both these tissues was highest prenatally and declined perinatally. In heart and skeletal muscle phosphorylase and phosphorylase kinase activities were extremely low prenatally although both enzymes were largely in their activated forms. Postnatally the nonactive form of both enzymes increased greatly throughout 30 postnatal days. In all three tissues, particularly heart and skeletal muscle, these changes could not be correlated with levels of tissue glycogen.  相似文献   

10.
Portions of liver were obtained by biopsy from rats infused with various concentrations of glucagon or epinephrine and analyzed for cyclic AMP, glycogen, phosphorylase activity, and glycogen synthetase I activity. The response of tissue cyclic AMP to glucagon or epinephrine was far less sensitive than other metabolic parameters; at certain lower doses of glucagon or epinephrine, glycogen decomposed without a simultaneous increase in the hepatic level of cyclic AMP. It is probable that hormonal activation of adenylate cyclase results in an increase of cyclic AMP only in its small “active” pool without detectable changes in its much larger inactive or bound pool. Though the active cyclic AMP is expected to be released into the circulation or to be labeled with [3H]adenine in preference to the inactive nucleotide, neither the increase of cyclic AMP in the vena cava in vivo nor the incorporation of [3H]adenine into tissue cyclic AMP in liver slices in vitro exhibited more sensitivity to glucagon than the hepatic level of cyclic AMP as a whole. Thus, it remains to be settled whether cyclic AMP is compartmentalized in the cell or plays no essential role in the stimulation of hepatic glycogenolysis induced by small doses of hormones.  相似文献   

11.
The effects of hydrocortisone on newborn rat liver were studied by using biochemical assays, electron microscopy and quantitative morphometry. Hydrocortisone increased the number of lysosomes in the hepatocytes. Most of the lysosomes represented glycogen-containing autophagic vacuoles. The glucocorticoid also increased the activity of the liver glycogen-hydrolyzing acid glucosidase and the breakdown of glycogen inside lysosomes. The activity of the liver acid mannose 6-phosphatase was decreased. This may be related to the stimulation of autophagic mechanisms in the newborn rat hepatocytes.  相似文献   

12.
The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, contractile force, and glycogen metabolism were investigated in the perfused rat heart. While both agents produced time- and concentration-dependent increases in cyclic GMP, only acetylcholine significantly decreased contractile force. Neither agent altered the basal cyclic AMP concentration, cyclic AMP-dependent protein kinase activity ratio, or phosphorylase activity. When dosages were adjusted to give approximately equal increases in cyclic GMP, acetylcholine attenuated the effect of epinephrine on contractile force and glycogen phosphorylase activity while nitroprusside did not antagonize the action of the beta-adrenergic agent on either parameter. The data suggest that increased cardiac cyclic GMP is not sufficient to completely explain the action of acetylcholine on either contractile force or its antagonism of epinephrine-induced increases in force or glycogen phosphorylase activity.  相似文献   

13.
The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, contractile force, and glycogen metabolism were investigated in the perfused rat heart. While both agents produced time- and concentration-dependent increases in cyclic GMP, only acetylcholine significantly decreased contractile force. Neither agent altered the basal cyclic AMP concentration, cyclic AMP-dependent protein kinase activity ratio, or phosphorylase activity. When dosages were adjusted to give approximately equal increases in cyclic GMP, acetylcholine attenuated the effect of epinephrine on contractile force and glycogen phosphorylase activity while nitroprusside did not antagonize the action of the beta-adrenergic agent on either parameter. The data suggest that increased cardiac cyclic GMP is not sufficient to completely explain the action of acetylcholine on either contractile force or its antagonism of epinephrine-induced increases in force or glycogen phosphorylase activity.  相似文献   

14.
Glucose metabolism in the newborn rat. Hormonal effects in vivo   总被引:3,自引:1,他引:2       下载免费PDF全文
1. The concentrations of liver glycogen and plasma d-glucose were measured in caesarian-delivered newborn rats at time-intervals up to 3h after delivery after treatment of the neonatal rats with glucagon, dibutyryl cyclic AMP, cortisol or cortisol+dibutyryl cyclic AMP. Glycogenolysis was promoted by glucagon or dibutyryl cyclic AMP in the third hour after birth but not at earlier times. Cortisol and dibutyryl cyclic AMP together (but neither agent alone) promoted glycogenolysis in the second hour after birth, but no hormone combination was effective in the first postnatal hour. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75 min after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into newborn rats at delivery and after treatment with glucagon or actinomycin D. Glucagon-mediated hyperglycaemia at this time was due to an increased rate of glucose formation and a decreased rate of glucose utilization. Actinomycin D prevented glucose formation and accelerated the rate of postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose was measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into glucagon- or actinomycin D-treated rats immediately after delivery. The calculated rates of lactate formation were unchanged by either treatment, but lactate utilization was stimulated by glucagon administration. Glucagon stimulated and actinomycin D diminished (14)C incorporation into plasma d-glucose. 4. The factors involved in the initiation of glycogenolysis and gluconeogenesis in the rat immediately after birth are discussed.  相似文献   

15.
Cyclic AMP levels in rat lungs showed phasic elevations which peaked during fetal, neonatal and late postnatal periods of development. Lung phospholipids showed major alterations in their levels during fetal and early neonatal life. Alterations in glycogen levels were accompanied by parallel changes in phosphorylase a/total phosphorylase activity which may be related to changes in cyclic AMP during development. Cyclic AMP levels were dependent on the relative activities of adenylate cyclase and cyclic AMP phosphodiesterase which also changed with age. Activation of adenylate cyclase by norepinephrine and NaF, and of cyclic AMP phosphodiesterase by calcium, was maximum neonatally and declined variably thereafter. These data suggest a relationship between cyclic AMP, glycogen and phospholipids during rat lung development.  相似文献   

16.
The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation. Other effects of the glucose addition were a transient rise in the concentration of cyclic AMP and a more prolonged increase in the concentration of hexose 6-monophosphate and of fructose 2,6-bisphosphate. The activity of glycogen synthase increased about 4-fold and that of glycogen phosphorylase decreased 3-5-fold. These changes could be reversed by the removal of glucose from the medium and induced again by a new addition of the sugar. These effects of glucose were also obtained with glucose derivatives known to form the corresponding 6-phosphoester. Similar changes in glycogen synthase and glycogen phosphorylase activity were induced by glucose in a thermosensitive mutant deficient in adenylate cyclase (cdc35) when incubated at the permissive temperature of 26 degrees C, but were much more pronounced at the nonpermissive temperature of 35 degrees C. Under the latter condition, glycogen synthase was nearly fully activated and glycogen phosphorylase fully inactivated. Such large effects of glucose were, however, not seen in another adenylate-cyclase-deficient mutant (cyr1), able to incorporate exogenous cyclic AMP. When a nitrogen source or uncouplers were added to the incubation medium after glucose, they had effects on glycogen metabolism and on the activity of glycogen synthase and glycogen phosphorylase which were directly opposite to those of glucose. By contrast, like glucose, these agents also caused, under most experimental conditions, a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis. Under all experimental conditions, the rate of glycolysis was proportional to the concentration of fructose 2,6-bisphosphate. Uncouplers, but not a nitrogen source, also induced an activation of glycogen phosphorylase and an inactivation of glycogen synthase when added to the cdc35 mutant incubated at the restrictive temperature of 35 degrees C without affecting cyclic AMP concentration.  相似文献   

17.
1. After nicotinic acid treatment, rat liver glycogen is depleted and phosphoenolpyruvate carboxykinase activity increased, to about twice the initial value. 2. The increase in phosphoenolpyruvate carboxykinase activity promoted by nicotinic acid is prevented by cycloheximide or actinomycin D, suggesting that this effect is produced by synthesis of the enzyme de novo. 3. Despite the enhancement of phosphoenolpyruvate carboxykinase activity and glycogen depletion, which occurs 5h after the injection of nicotinic acid, the gluconeogenic capacity of liver is low and considerably less than the values found in rats starved for 48h. 4. When the livers of well-fed rats are perfused in the presence of low concentrations of glucose, the activity of phosphoenolpyruvate carboxykinase significantly increases compared with the control. 5. This increase is not related to the glycogen content, but seems to be also the result of synthesis of the enzyme de novo, since this effect is counteracted by previous treatment with cycloheximide or actinomycin D. 6. Phosphoenolpyruvate carboxykinase activity is not increased in the presence of low concentrations of circulating glucose when 40 mM-imidazole (an activator of phosphodiesterase) is added to the perfusion medium. 7. Addition of dibutyryl cyclic AMP to the perfusion medium results in an increase in phosphoenolpyruvate carboxykinase activity, in spite of the presence of normal concentrations of circulating glucose. On the other hand, the concentration of cyclic AMP in the liver increases when that of glucose in the medium is low. 8. These results suggest that, in the absence of hormonal factors, the regulation of phosphoenolpyruvate carboxykinase can be accomplished by glucose itself, inadequate concentrations of it resulting in the induction of the enzyme. The mediator in this regulation, as in hormonal regulation, seems to be cyclic AMP.  相似文献   

18.
Incubation of human polymorphonuclear leukocytes in a glucose-free Krebs-Ringer bicarbonate buffer for 2 h resulted in glycogen depletion, decreased phosphorylase activity and increased synthase-R activity. Addition of dialyzed latex particles to starved leukocytes revealed a very rapid ingestion rate (half-maximal ingestion within 30 s). This uptake is followed by glycogenolysis associated with an immediate two-fold increase in phosphorylase a activity and a synthase-R to -D conversion within 30 s. Furthermore, in rapid time-course experiments with phagocytozing cells we found that the concentration of cyclic AMP increased by 93% within 15 s and returned to baseline values at 1 min. In a medium without added calcium and with 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid, phagocytosis was blocked, cyclic AMP formation decreased by 50% and phosphorylase activation was abolished, but the conversion of synthase-R to -D was preserved. Addition of calcium ions to cells suspended in a calcium-free buffer without added latex results in phosphorylase activation and glycogenolysis, but not in cyclic AMP increase or synthase-R to -D conversion. Measurements of 45Ca efflux during phagocytosis suggest an initial increase in cytosolic calcium obtained by a release of membrane-bound 45Ca. Activation of phosphorylase during phagocytosis is thus presumably due to an increase in cytosol Ca2+ and subsequent activation of phosphorylase kinase, and is independent of the simultaneous increase in concentration of cyclic AMP. Phosphorylation of synthase R to the D form does not depend on the presence of Ca2+ in the extracellular phase.  相似文献   

19.
1. Various mitogens such as concanavalin A, phytohaemagglutinin, the pokeweed mitogen and trypsin were found to produce a rapid and transient activation of glycogen phosphorylase activity of lymphocytes incubated in a Krebs-Ringer-bicarbonate-glucose buffer. 2. Activation of the enzyme by these mitogens was always accompanied by an increase in the intracellular cyclic AMP concentration. 3. The presence of calcium ions in the incubation buffer was essential for obtaining the mitogen effects. Addition of ionophore A-23187 also produced an activation of glycogen phosphorylase, similar to that found in mitogen activation but without increase in intracellular cyclic AMP concentration. Dibutyril cyclic AMP also produced lymphocyte phosphorylase activation, even in the absence of extracellular calcium ions. 4. It is proposed that phosphorylase activation by mitogens occurs through a mechanism that involves the participation of both calcium ions and cyclic AMP.  相似文献   

20.
In rat hepatocytes, vanadate modifies neither the intracellular concentration of cyclic AMP nor the --cyclic AMP/+cyclic AMP activity ratio for cyclic AMP-dependent protein kinase. Vanadate can, however, counteract the increase in cyclic AMP and the increase in the --cyclic AMP/+cyclic AMP activity ratio of cyclic AMP-dependent protein kinase induced by glucagon. On the other hand, vanadate treatment of hepatocytes can produce a time- and concentration-dependent increase in cyclic AMP- and Ca2+-independent casein kinase activity. Maximal activation at the optimal time with 5 mM-vanadate was about 70% over control. A clear relationship was observed between the activation of casein kinase and the inactivation of glycogen synthase after vanadate treatment. These results suggest that casein kinase activity may be involved in vanadate actions in rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号