首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在胶原存在条件下低密度脂蛋白(LDL)的氧化反应性的改变一直未见报道,通过在体外分离大鼠I型胶原并制成胶原凝胶,发现铜离子(Cu^2+)介导的LDL氧化反应的潜伏期明显延长,所生成的硫代巴比妥酸反应物(TBARS)最大值远低于对照组,胶原组氧化LDL(ox-LDL)的相对电泳迁移率(REM)也较对照组为低;在偶氮类化合物2,2'-盐酸脒基丙烷(AAPH)诱导的LDL氧化过程中,胶原组与对照组的LD  相似文献   

2.
段亚平 《生命的化学》2001,21(6):516-517
1 .氧化低密度脂蛋白 (LDL)的发现形成动脉粥样硬化过程中的泡沫细胞病变与巨噬细胞的脂化胆固醇积累相关 ,在巨噬细胞极少发现LDL受体 ,特别是遗传性LDL受体缺乏的同形合子患者的家族性高胆固醇血症及其动物模型中 ,极早出现动脉粥样硬化病变。以后用抗氧化药能阻止高LDL血症的实验兔发生动脉粥样硬化。用特异性的氧化LDL的单克隆抗体 ,采用免疫组织化学法 ,从高脂血症的患者及动物模型的动脉粥样硬化病变部位检出氧化LDL。LDL的氧化变性的实际部位在活体内 ,特别是在血管壁内发生 ,对动脉粥样硬化的形成起重要作用。…  相似文献   

3.
低密度脂蛋白氧化修饰的研究   总被引:8,自引:0,他引:8  
  相似文献   

4.
5.
氧化修饰低密度脂蛋白与动脉粥样硬化周永列(浙江省人民医院,杭州310014)关键词氧化修饰低密度脂蛋白,动脉粥样硬化在动脉粥样硬化(AS)与血浆脂质关系的研究中,血浆低密度脂蛋白(LDL)浓度升高被认为是引起AS的重要危险因素而受到广泛的重视。但是脂...  相似文献   

6.
氧化修饰低密度脂蛋白与动脉粥样硬化   总被引:8,自引:0,他引:8  
陈瑗  周玫 《生命科学》2000,12(1):44-46
动脉粥样硬化的发生发展与低密度脂蛋白受到氧化修饰有关。本文从以下四个方面对本室的工作进行了综述:(1)动脉粥样硬化机体受到脂质过氧化损伤;(2)Ox-LDL对内皮细胞、平滑肌细胞和巨噬细胞的毒性效应;(3)Ox-LDL和MDA-LDL的比较及与Ox-LDL和MDA-LDL结合的清道夫受体的特征;(4)不同方法对LDL氧化修饰的比较和以LDL氧化修饰为模型对某些物质的抗氧化修饰研究。研究结果为动脉粥  相似文献   

7.
目的:研究氧化低密度脂蛋白(Ox-LDL)对人肾小球系膜细胞植物血凝素样受体(lectin-like oxidized low-density lipoprotein receptor,LOX-1)表达。方法:不同浓度的Ox-LDL和培养的人肾小球系膜细胞共孵育,应用Real-time PCR和Western Blot方法检测Ox-LDL对人肾小球系膜细胞LOX-1表达的影响。结果:Ox-LDL剂量和时间依赖性促进人肾小球系膜细胞LOX-1mRNA和蛋白表达。Ox-LDL 40μg/mL刺激细胞0-24小时,于12小时达峰值。Ox-LDL 10、20、40、60μg/mL分别作用于细胞12小时,40μg/mL组达到峰值,为基础值的3.73倍。Ox-LDL 40μg/mL刺激细胞0-24小时,LOX-1蛋白24小时达高峰,Ox-LDL 10、20、40、60μg/mL分别作用细胞24小时,40μg/mL组细胞LOX-1蛋白达到峰值,为基础值的1.81倍。结论:Ox-LDL在一定浓度范围内剂量和时间依赖性促进人肾小球系膜细胞LOX-1表达。  相似文献   

8.
用Cu~(2+)(引发氧化修饰)和脂质过氧化降解产物丙二醛对低密度脂蛋白(LDL)进行修饰,分别测定了巨噬细胞系P~(300)D_1和小鼠腹腔巨噬细胞对两种被修饰LDL的结合量(包括内移量)和降解量。结果显示:LDL经氧化修饰和丙二醛修饰后被两类巨噬细胞的结合量与降解量均高于正常LDL,在修饰程度相近(琼脂糖电泳迁移率相近)时,两类巨噬细胞对氧化修饰LDL的结合量与降解量高于丙二醛修饰的LDL。竞争性抑制结果显示,丙二醛修饰的LDL和乙酰化修饰的LDL均可部分抑制巨噬细胞对氧化修饰LDL的结合与降解。  相似文献   

9.
染料木素体外抑制人低密度脂蛋白氧化修饰作用   总被引:4,自引:1,他引:4  
为探讨染料木素对人低密度脂蛋白(LDL)氧化修饰的影响,采用铜离子(10 umol/L)体外氧化LDL的方法,观察大豆异黄酮主要成分染料木素(genistein)对LDL氧化过程中脂质过氧化产物丙二醛(MDA)含量和维生素E(VitE)水平的影响。结果:10 umol/LCuSO4与100 mg/L LDL共同孵育18 h,MDA含量明显升高,VitE含量明显降低,染料木素(0.25、1.25、2.5、12.5、25、50、125、250 umol/L)能显著降低MDA含量,升高VitE含量(P<0.01,P<0.05,P<0.02),且呈剂量依赖性。提示一定浓度范围的染料木素体外有抗LDL氧化修饰作用。  相似文献   

10.
芦丁和槲皮素对低密度脂蛋白氧化修饰的抑制作用   总被引:6,自引:0,他引:6  
以低密度脂蛋白(LDL)氧化修饰为模型和以硫代巴比妥酸反应物质(TBAS)生成量以及LDL的α-Tocopherol和荧光物质含量为指标,以时间效应和浓度效应说明槲皮素和芦丁能明显地抑制Ca^2+诱导的LDL氧化修饰但其抗氧化修饰的程度无明显差异。它们对已受到Cu^2+氧化修饰的LDL的过氧化无明显地终止作用。  相似文献   

11.
The kinetics of the oxidation of human low densit) lipoprotein (LDL) can be measured continuously by monitoring the change of the 234 nm diene absorption. The time-course shows three consecutive phases, a lag-phase during which the diene absorption increases only weakly. a propagation phase with a rapid increase of the diene absorption and finally a decomposition phase. The increase of the dienes is highly correlated with the increase of MDA or lipid hydroperoxides. The duration of the lag-phase is determined by the endogenous antioxidants contained in LDL (vitamin E. carotenoids. retinylstearate). Water-soluble antioxidants (ascorbic acid. urate) added in micromolar concentrations prolong the lag-phase in a concentration-dependent manner. The determination of the lag-phase is a convenient and objective procedure for determining the susceptibility of LDL from different donors towards oxidation as well as effects of pro-and antioxidants.  相似文献   

12.
Copper-induced LDL oxidation is characterized by an 'induction phase' (lag phase) during which the endogenous antioxidants are consumed, followed by a 'propagation phase' in which the LDL-associated polyunsaturated fatty acids are oxidized. Oxidation products may play an important role in the propagation of the oxidative process in the arterial intima as they increase the permeability of the damaged endothelium to various plasma components, including LDL. We therefore found it of interest to investigate the kinetics of LDL oxidation in vitro under conditions where LDL is sequentially exposed to Cu2+-induced oxidation.

The results of our studies demonstrate that when native LDL is exposed to copper oxidation in a medium containing oxidized LDL, oxidation of the added LDL may be almost instantaneous. Furthermore, even when native LDL is added to 'oxidizing LDL' towards the end of the lag phase or during the propagation phase it becomes oxidized after a very short lag. This oxidation process, occurring in spite of the possible protective effect of the antioxidants present in the newly added LDL, indicates that although antioxidants prolong the latency period by preventing the formation of active free radicals, when such radicals are present in the system, oxidation propagates. These results lend strong support to the generally accepted paradigm regarding the mechanism of propagation of lipid oxidation.

In view of the effect of oxidation products on the permeability of the endothelium, the observed shortening of the lag period may result in a vicious cycle, independent of the LDL-associated antioxidants, leading to continuing oxidation and foam cell formation.  相似文献   

13.
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted protein that binds to the epidermal growth factor-like-A domain of the low density lipoprotein receptor (LDLR) and mediates LDLR degradation in liver. Gain-of-function mutations in PCSK9 are associated with autosomal dominant hypercholesterolemia in humans. Size-exclusion chromatography of human plasma has shown PCSK9 to be partly associated with undefined high molecular weight complexes within the LDL size range. We used density gradient centrifugation to isolate LDL in plasma pooled from 5 normolipidemic subjects and report that >40% of total PCSK9 was associated with LDL. Binding of fluorophore-labeled recombinant PCSK9 to isolated LDL in vitro was saturable with a KD ∼ 325 nm. This interaction was competed >95% by excess unlabeled PCSK9, and competition binding curves were consistent with a one-site binding model. An N-terminal region of the PCSK9 prodomain (amino acids 31–52) was required for binding to LDL in vitro. LDL dose-dependently inhibited binding and degradation of cell surface LDLRs by exogenous PCSK9 in HuH7 cells. LDL also inhibited PCSK9 binding to mutant LDLRs defective at binding LDL. These data suggest that association of PCSK9 with LDL particles in plasma lowers the ability of PCSK9 to bind to cell surface LDLRs, thereby blunting PCSK9-mediated LDLR degradation.  相似文献   

14.
Aggregation and fusion of lipoproteins trigger subendothelial retention of cholesterol, promoting atherosclerosis. The tendency of a lipoprotein to form fused particles is considered to be related to its atherogenic potential. We aimed to isolate and characterize aggregated and nonaggregated subfractions of LDL from human plasma, paying special attention to particle fusion mechanisms. Aggregated LDL was almost exclusively found in electronegative LDL (LDL(−)), a minor modified LDL subfraction, but not in native LDL (LDL(+)). The main difference between aggregated (agLDL(−)) and nonaggregated LDL(−) (nagLDL(−)) was a 6-fold increased phospholipase C-like activity in agLDL(−). agLDL(−) promoted the aggregation of LDL(+) and nagLDL(−). Lipoprotein fusion induced by α-chymotrypsin proteolysis was monitored by NMR and visualized by transmission electron microscopy. Particle fusion kinetics was much faster in agLDL(−) than in nagLDL(−) or LDL(+). NMR and chromatographic analysis revealed a rapid and massive phospholipid degradation in agLDL(−) but not in nagLDL(−) or LDL(+). Choline-containing phospholipids were extensively degraded, and ceramide, diacylglycerol, monoacylglycerol, and phosphorylcholine were the main products generated, suggesting the involvement of phospholipase C-like activity. The properties of agLDL(−) suggest that this subfraction plays a major role in atherogenesis by triggering lipoprotein fusion and cholesterol accumulation in the arterial wall.  相似文献   

15.
The present study shows that copper oxidation of LDL is a tightly-ordered process which can be finely controlled by appropriate selection of duration of oxidation and of concentrations of LDL and copper. Oxidation of LDL (0.1-2.0 mg LDL protein/ml) was carried out by copper catalysis (in the ratio of 2.5 μM Cu2+ to 0.1 mg LDL protein/ml) in phosphate-buffered saline, and was monitored by agarose gel electro-phoresis, gas chromatography (GC), anion exchange fast protein liquid chromatography (FPLC), fluorescence spectroscopy and dynamic light scattering. Analysis of the data showed strong cross correlations between many of the parameters of oxidation. Oxidation was more rapid for lower concentrations than for higher concentrations of LDL, despite the same ratio of copper to LDL being employed. Chemical kinetics analysis of the GC data suggested that 7β-hydroxycholesterol formation occurred as a first order (or pseudo first order) consecutive reaction to the oxidation of linoleate. The first order rate constants for decomposition of lioleate and production of 7β-hydroxycholesterol correlated closely with the theoretically-calculated times between collision of LDL particles. LDL particle diameter, measured by dynamic light scattering, increased by ca. 50% over 24 h oxidation, suggesting unfolding of apo B-100.

Prolonged oxidation of LDL at low concentration suggested that the radical chain reaction was able to propagate, albeit slowly, on cholesterol after all the polyunsaturated fatty acid was consumed. For higher concentrations of LDL, prolonged oxidation resulted in partial aggregation. These findings are applicable to preparing oxidised LDL with different degrees of oxidation, under controlled conditions, for studying its biological properties.  相似文献   

16.
We report on a new method for the determination of lipid oxidation in lipoproteins and plasma. The biological lipid system is preloaded with a fluorescent analog of phosphatidylcholine containing diphenylhexatriene (DPH) propionic acid covalently linked to the sn-2 position. When externally added, the respective phospholipid label (DPHPC) localizes to the surface monolayer of a lipoprotein. Under oxidative conditions (e.g. in the presence of Cu2+ ions) the fluorophore undergoes decomposition, resulting in a continuous decrease of fluorescence intensity which reflects the oxidation of a chemically defined phospholipid molecule with well defined localization. When incorporated into LDL particles, the kinetics of the decrease in DPHPC fluorescence intensity upon exposure to Cu2+ is very similar to that of conjugated diene accumulation. Furthermore, our assay can be applied to follow the oxidation of lipids in diluted serum and may also be developed into a suitable test system for clinical studies of susceptibility of plasma lipids to oxidation.  相似文献   

17.
Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.  相似文献   

18.
《Free radical research》2013,47(4):317-327
We report on a new method for the determination of lipid oxidation in lipoproteins and plasma. The biological lipid system is preloaded with a fluorescent analog of phosphatidylcholine containing diphenylhexatriene (DPH) propionic acid covalently linked to the sn-2 position. When externally added, the respective phospholipid label (DPHPC) localizes to the surface monolayer of a lipoprotein. Under oxidative conditions (e.g. in the presence of Cu2+ ions) the fluorophore undergoes decomposition, resulting in a continuous decrease of fluorescence intensity which reflects the oxidation of a chemically defined phospholipid molecule with well defined localization. When incorporated into LDL particles, the kinetics of the decrease in DPHPC fluorescence intensity upon exposure to Cu2+ is very similar to that of conjugated diene accumulation. Furthermore, our assay can be applied to follow the oxidation of lipids in diluted serum and may also be developed into a suitable test system for clinical studies of susceptibility of plasma lipids to oxidation.  相似文献   

19.
目的观察低密度脂蛋白胆固醇(LDL-c)对家兔动脉粥样硬化(AS)形成的影响,探讨AS的发生机制。方法以高脂饲料复制家兔实验性AS模型,分阶段检测家兔血清胆固醇(TC)、甘油三脂(TG)、高密度脂蛋白胆固醇(HDL-c)和低密度脂蛋白胆固醇(LDL-c)含量;观察主动脉内膜病理学变化;分析主动脉内膜增生程度及AS斑块面积与血浆脂蛋白水平的相关性。结果高脂组家兔主动脉粥样硬化面积和内膜增生程度明显较对照组增加(P<0.01),血浆LDL-c水平明显较对照组升高(P<0.01);动脉内膜增生程度及AS斑块面积均与血浆LDL-c水平呈非常显著正相关(r=0.837,P<0.001)。结论提示血浆LDL-c水平升高,是致AS发生发展的重要原因。  相似文献   

20.
《Free radical research》2013,47(1-5):233-242
Human plasma low density lipoprotein (LDL) exposed to oxygen saturated buffer becomes depleted of alpha-tocopherol within 3 to 6 hours. Thereafter, lipid peroxidation commences as evidenced by the loss of 18:2 (67nmol/mg LDL) and 20:4 (12nmol/mg LDL) and the concomitant formation of 4-hydroxy-nonenal (0.28 nmol/mg LDL) and fluorescent compounds. The major fluorophor in apo B of oxidized LDL has an excitation maximum at 355 nm and an emission maximum at 430 nm. A fluorophor with the same spectral properties is produced in apo B, if LDL is incubated with 4-hydroxynonenal, whereas malonal-dehyde gives a fluorophor with excitation and emission maxima at 400/470nm. Three-dimensional fluorescence spcetroscopy proved to be an useful tool in analysing the complex fluorescence of apo B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号