首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor (FGF) receptors (FGFRs) signal to modulate diverse cellular functions, including epithelial cell morphogenesis. In epithelial cells, E-cadherin plays a key role in cell-cell adhesion, and its function can be regulated through endocytic trafficking. In this study, we investigated the location, trafficking, and function of FGFR1 and E-cadherin and report a novel mechanism, based on endocytic trafficking, for the coregulation of E-cadherin and signaling from FGFR1. FGF induces the internalization of surface FGFR1 and surface E-cadherin, followed by nuclear translocation of FGFR1. The internalization of both proteins is regulated by common endocytic machinery, resulting in cointernalization of FGFR1 and E-cadherin into early endosomes. By blocking endocytosis, we show that this is a requisite, initial step for the nuclear translocation of FGFR1. Overexpression of E-cadherin blocks both the coendocytosis of E-cadherin and FGFR1, the nuclear translocation of FGFR1 and FGF-induced signaling to the mitogen-activated protein kinase pathway. Furthermore, stabilization of surface adhesive E-cadherin, by overexpressing p120ctn, also blocks internalization and nuclear translocation of FGFR1. These data reveal that conjoint endocytosis and trafficking is a novel mechanism for the coregulation of E-cadherin and FGFR1 during cell signaling and morphogenesis.  相似文献   

2.
Basic fibroblast growth factor (FGF-2) is one of the prototype members of a rapidly expanding family of polypeptides. FGF-2 acts on cells via a dual-receptor system consisting of high-affinity tyrosine kinase receptors (FGFR) and low-affinity receptors comprised of heparan sulfate proteoglycans. Following ligand binding and subsequent internalization, both FGF-2 and FGFR1 are translocated to the nucleus where they have activities distinct from those expressed at the cell surface. Despite the growing number of growth factors and receptors shown to translocate to the nucleus, little is known about the mechanisms of internalization and translocation and how these processes are regulated. In the studies reported in this paper, we examined the roles of clathrin-dependent and -independent endocytosis in the uptake of FGFR1 and one of its ligands, FGF-2. While the uptake of FGF-2 occurred at least partly by a caveolar-dependent mechanism, that of FGFR1 was independent of both caveolae and coated pits. Surprisingly, neither the uptake of FGF-2 nor FGFR1 required the activity of the receptor tyrosine kinase. In addition, we identified a cell cycle-dependent pathway of FGFR1 nuclear translocation that appears to be independent of ligand binding.  相似文献   

3.
4.
5.
6.
The integrative nuclear FGFR1 signaling (INFS) pathway functions in association with cellular growth, differentiation, and regulation of gene expression, and is activated by diverse extracellular signals. Here we show that stimulation of angiotensin II (AII) receptors, depolarization, or activation protein kinase C (PKC) or adenylate cyclase all lead to nuclear accumulation of fibroblast growth factor 2 (FGF-2) and FGFR1, association of FGFR1 with splicing factor-rich domains, and activation of the tyrosine hydroxylase (TH) gene promoter in bovine adrenal medullary cells (BAMC). The up-regulation of endogenous TH protein or a transfected TH promoter-luciferase construct by AII, veratridine, or PMA (but not by forskolin) is abolished by transfection with a dominant negative FGFR1TK-mutant which localizes to the nucleus and plasma membrane, but not by extracellularly acting FGFR1 antagonists suramin and inositolhexakisphosphate (IP6). Mechanism of TH gene activation by FGF-2 and FGFR1 was further investigated in BAMC and human TE671 cultures. TH promoter was activated by co-transfected HMW FGF-2 (which is exclusively nuclear) but not by cytoplasmic FGF-1 or extracellular FGFs. Promoter transactivation by HMWFGF-2 was accompanied by an up-regulation of FGFR1 specifically in the cell nucleus and was prevented FGFR1(TK-) but not by IP6 or suramin. The TH promoter was also transactivated by co-transfected wild-type FGFR1, which localizes to both to the nucleus and the plasma membrane, and by an exclusively nuclear, soluble FGFR1(SP-/NLS) mutant with an inserted nuclear localization signal. Activation of the TH promoter by nuclear FGFR1 and FGF-2 was mediated through the cAMP-responsive element (CRE) and was associated with induction of CREB- and CBP/P-300-containing CRE complexes. We propose a new model for gene regulation in which nuclear FGFR1 acts as a mediator of CRE transactivation by AII, cell depolarization, and PKC.  相似文献   

7.
8.
Rituximab is reported to inhibit the proliferation of lymphoma cells through an unknown CD20-mediated signal transduction pathway. Herein, we investigated cell surface molecules involved in the CD20-mediated signal transduction pathway by using a recently developed technique named enzyme-mediated activation of radical sources. Using this method, we found that under stimulation with rituximab and another anti-CD20 antibody B-Ly1, CD20 was physically associated with fibroblast growth factor receptor 3 (FGFR3) as well as some other receptor tyrosine kinases in Raji cells. However, under stimulation with a noncytotoxic anti-CD20 antibody 2H7, CD20 was not associated with FGFR3 but with the PDGF receptor β. When the tyrosine kinase activity of FGFR3 was inhibited by the chemical inhibitor PD173074 or an siRNA knockdown strategy, the proliferation inhibition by rituximab was attenuated, indicating that FGFR3 participates in the rituximab-dependent signal transduction pathway leading to proliferation inhibition. These observations raise the possibility that concomitant targeted therapy toward FGFR3 might improve the efficacy and safety of the rituximab therapy.  相似文献   

9.
In an effort to determine the localization of fibroblast growth factor (FGF) receptors (FGFR) that could mediate the intracellular action of FGF-2, we discovered the presence of high-affinity. FGF-2 binding sites in the nuclei of bovine adrenal medullary cells (BAMC). Western blot analysis demonstrated the presence of 103-, 118-, and 145-kDa forms of FGFR1 in nuclei isolated from BAMC. 125I-FGF-2 cross-linking to nuclear extracts followed by FGFR1 immunoprecipitation showed that FGFR1 can account for the nuclear FGF-2 binding sites. Nuclear FGFR1 has kinase activity and undergoes autophosphorylation. Immunocytochemistry with the use of confocal and electron microscopes demonstrated the presence of FGFR1 within the nuclear interior. Nuclear subfractionation followed by Western blot or immunoelectron microscopic analysis showed that the nuclear FGFR1 is contained in the nuclear matrix and the nucleoplasm. Agents that induce translocation of endogenous FGF-2 to the nucleus (forskolin, carbachol, or angiotensin II) increased the intranuclear accumulation of FGFR1. This accumulation was accompanied by an overall increase in FGF-2-inducible tyrosine kinase activity. Our findings suggest a novel mode for growth factor action whereby growth factor receptors translocate to the nucleus in parallel with their ligand and act as direct mediators of nuclear responses to cell stimulation.  相似文献   

10.
Several members of the fibroblast growth factor (FGF) family lack signal peptide (SP) sequences and are present only in trace amounts outside the cell. However, these proteins contain nuclear localization signals (NLS) and accumulate in the cell nucleus. Our studies have shown that full length FGF receptor 1 (FGFR1) accumulates within the nuclear interior in parallel with FGF-2. We tested the hypothesis that an atypical transmembrane domain (TM) plays a role in FGFR1 trafficking into the nuclear interior. With FGFR1 destined for constitutive fusion with the plasma membrane due to its SP, how the receptor may enter the nucleus is unclear. Sequence analysis identified that FGFR1 has an atypical TM containing short stretches of hydrophobic amino acids (a.a.) interrupted by polar a.a. The beta-sheet is the predicted conformation of the FGFR1 TM, in contrast to the alpha-helical conformation of other single TM tyrosine kinase receptors, including FGFR4. Receptor trafficking in live cells was studied by confocal microscopy via C-terminal FGFR1 fusions to enhanced green fluorescent protein (EGFP) and confirmed by subcellular fractionation and Western immunoblotting. Nuclear entry of FGFR1-EGFP was independent of karyokinessis, and was observed in rapidly proliferating human TE671 cells, in slower proliferating glioma SF763 and post-mitotic bovine adrenal medullary cells (BAMC). In contrast, a chimeric FGFR1/R4-EGFP, where the TM of FGFR1 was replaced with that of FGFR4, was associated with membranes (golgi-ER, plasma, and nuclear), but was absent from the nucleus and cytosol. FGFR1delta-EGFP mutants, with hydrophobic TM a.a. replaced with polar a.a., showed reduced association with membranes and increased cytosolic/nuclear accumulation with an increase in TM hydrophilicity. FGFR1(TM-)-EGFP (TM deleted), was detected in the golgi-ER vesicles, cytosol, and nuclear interior; thus demonstrating that the FGFR1 TM does not function as a NLS. To test whether cytosolic FGFR1 provides a source of nuclear FGFR1, cells were transfected with FGFR1(SP-) (SP was deleted), resulting in cytosolic, non-membrane, protein accumulation in the cytosol and the cell nucleus. Our results indicate that an unstable association with cellular membranes is responsible for the release of FGFR1 into the cytosol and cytosolic FGFR1 constitutes the source of the nuclear receptor.  相似文献   

11.
Many nuclear proteins are imported into the cell nucleus by the “classical” nuclear localization signal (NLS)-mediated import pathway. In this pathway, a sequence rich in basic residues in the protein interacts with a heterodimeric complex termed importin and this, along with the GTPase Ran, mediates nuclear import of the NLS-bearing protein. The heterogeneous nuclear ribonucleoprotein (hnRNP) A1 protein contains a novel nuclear localization sequence, termed M9, that does not contain any clusters of basic residues. Very recently, we showed that M9 directs import into the nucleus by a novel protein import pathway distinct from the classical NLS pathway. A 90-kilodalton protein termed transportin was identified as a protein that specifically interacts with wild-type M9 but not transport-defective M9 mutants. Transportin and an ATP-regenerating system were found to be necessary and sufficient for import of M9-containing proteins in anin vitroimport assay. In this report, we provide additional evidence that transportin can interact directly with M9-containing proteins and also show that it can mediate import of full-length hnRNP A1. In addition, Ran, or a Ran-binding protein, is identified as a second protein component of this novel nuclear import pathway. Transportin relatives fromSaccharomyces cerevisiaewhich likely serve as additional nuclear transport receptors are described.  相似文献   

12.
13.
14.
TGF-beta and the Smad signal transduction pathway.   总被引:31,自引:0,他引:31  
  相似文献   

15.
Among the known pathways of protein nuclear import, the karyopherin β2/transportin pathway is only the second to have a defined nuclear localization signal (NLS) consensus. Huntingtin, a 350-kDa protein, has defined roles in the nucleus, as well as a CRM1/exportin-dependent nuclear export signal; however, the NLS and exact pathway of import have remained elusive. Here, using a live cell assay and affinity chromatography, we show that huntingtin has a karyopherin β2-dependent proline-tyrosine (PY)-NLS in the amino terminus of the protein. This NLS comprises three consensus components: a basic charged sequence, a downstream conserved arginine, and a PY sequence. Unlike the classic PY-NLS, which has an unstructured intervening sequence between the consensus components, we show that a β sheet structured region separating the consensus elements is critical for huntingtin NLS function. The huntingtin PY-NLS is also capable of import through the importin/karyopherin β1 pathway but was not functional in all cell types tested. We propose that this huntingtin PY-NLS may comprise a new class of multiple import factor-dependent NLSs with an internal structural component that may regulate NLS activity.  相似文献   

16.
17.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
The epidermal growth factor (EGF)-dependent trafficking of the intact EGF receptor to the nucleus and its requirement for growth factor induction of cyclin D and other genes has been reported. Unresolved is the mechanism by which this or other transmembrane proteins are excised from a lipid bilayer before nuclear translocalization. We report that, after the addition of EGF, the cell surface EGF receptor is trafficked to the endoplasmic reticulum (ER) where it associates with Sec61beta, a component of the Sec61 translocon, and is retrotranslocated from the ER to the cytoplasm. Abrogation of Sec61beta expression prevents EGF-dependent localization of EGF receptors to the nucleus and expression of cyclin D. This indicates that EGF receptors are trafficked from the ER to the nucleus by a novel pathway that involves the Sec61 translocon.  相似文献   

20.
RASSF5 is a member of the Ras association domain family, which is known to be involved in cell growth regulation. Expression of RASSF5 is extinguished selectively by epigenetic mechanism(s) in different cancers and cell lines, and reexpression usually suppresses cell proliferation and tumorigenicity. To date, the mechanism regulating RASSF5 nuclear transport and its role in cell growth regulation remains unclear. Using heterokaryon assay, we have demonstrated that RASSF5 shuttles between the nucleus and the cytoplasm, and its export from the nucleus is sensitive to leptomycin B, suggesting that RASSF5 is exported from the nucleus by a CRM-1-dependent export pathway. We further demonstrate that RASSF5 contains a hydrophobic-rich nuclear export signal (NES) towards the C-terminus and two nuclear localization signals—one each at the N-terminus and the C-terminus. Combination of mutational and immunofluorescence analyses suggests that the functional NES residing between amino acids 260 and 300 in the C-terminus is necessary for the efficient export of RASSF5 from the nucleus. In addition, substitution of conserved hydrophobic residues within the minimal NES impaired RASSF5 export from the nucleus. Furthermore, exchange of proline residues within the putative Src homology 3 binding motifs altered the export of RASSF5 from the nucleus despite the presence of functional NES, suggesting that multiple domains independently modulate the nucleocytoplasmic transport of RASSF5. Interestingly, the present investigation provided evidence that RASSF5 interacts with the tyrosine kinase Lck through its C-terminal Src homology 2 binding motif and showed that Lck-mediated phosphorylation is critical for the efficient translocation of RASSF5 into the nuclear compartment. Interestingly, our data demonstrate that wild type and nuclear export defective (ΔNES) mutant of RASSF5 but not the import defective mutant of accumulate the cells at G1/S phase and induce apoptosis. Furthermore, the Lck-interaction-defective mutant of RASSF5 induces apoptosis without altering cell cycle progression, suggesting that RASSF5 induces apoptosis independent of cell cycle arrest. Together, our data demonstrate that interaction with Lck is critical for RASSF5 phosphorylation, which in turn regulates the cell growth control activity of RASSF5. Finally, we have shown that RASSF5 encodes four splice variants and is translocated to the nucleus by the classical nuclear import pathway. One of the splice variants, RASSF5C, was found to be localized in the cytoplasm and translocated into the nucleus upon leptomycin B treatment despite the absence of N-terminal nuclear localization signal, suggesting that distribution of RASSF5 variants in different cellular compartments may be critical for Ras-dependent cell growth regulation. Collectively, the present investigation provided evidence that Lck-mediated phosphorylation regulates the nucleocytoplasmic shuttling and cell growth control activities of RASSF5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号