首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermoregulatory capacities of 51 reindeer calves (Rangifer tarandus tarandus L.) aged 1-35 days were studied at -26.5 to +35.0 degrees C ambient temperatures at Kaamanen reindeer research station, Finland (69 degrees 10' N) during calving periods in May 1981 and May-July 1982. The newborn calves aged 1-4 days maintained a high body temperature (Tre) (mean +40.2 degrees C) even at the lowest experimental temperature of -22.5 degrees C by increasing their metabolic rate five-fold above the level at +11.0 degrees C. Heat production of the new-born calves was largely based on the metabolism of brown adipose tissue, stimulated by cold-induced discharge of the sympathetic nervous transmitter, noradrenaline (NA). Sensitivity of the calves to exogenous NA disappeared during the first 3-4 weeks of life. Thermal conductance of the calves was low at low ambient temperatures, but rose strongly as Ta increased above +10 degrees C. The extensive peripheral cooling, especially in the feet, was demonstrated in the calves aged 1-10 days. The lowest foot temperature (+10.5 degrees C) was measured in a 4-day-old calf at -14.5 degrees C. Slight shivering thermogenesis was recorded in the calves aged 1-4 days and occasionally in the older calves at low values of Ta. Shivering appears to be a reserve mechanism against severe cold. At about +20 degrees C and above the calves increased their Tre (approximately 1 degree C), oxygen consumption and heart rate. In the newborn calves oxygen consumption rose four- to five-fold and in 1-month-old calves about two-fold. Fast growing calves (maximum 400 g/day) appear to be more stressed by heat than by cold exposure.  相似文献   

2.
At ambient temperatures 10 degrees C, 20 degrees C, 30 degrees C, and 40 degrees C the influence of heat dissipation on the thermoregulatory mechanisms in rabbits with fever was investigated. Temperature of the brain (TBr-accuracy +/- 0.05 degree C) temperature of the nasal mucosa (TN) and temperature of the ear pinna (TAU-accuracy +/- 0.5 degree C) were measured in freely moving rabbits. Changes of conditions of heat dissipation were produced by: preventing heat dissipation by convection and radiation by putting ear-pads on the ear pinnae, high humidity of air for blocking of heat loss through evaporation, and facilitation of heat dissipation through shearing of the fur. The changes of the ambient thermal conditions as well as of the ability of heat dissipation were followed by changes in the dynamics of functions of the remaining (effective) thermoregulatory mechanisms in the rabbits. Thus despite changed thermal conditions of the environment, the TBr of the rabbits with fever was stabilized at a similar level.  相似文献   

3.
The structure of the fur of the reindeer (6 adults, 4 calves) was studied with light and scanning electron microscopy and skin and rectal temperatures were measured in 216 living animals at varying ambient temperatures (-28 to +15 degrees C) and also on excised skin samples in the laboratory (temperature range -20 to +20 degrees C, wind 0 or 10 m/sec, 5 different directions). Guard hair count and length varied according to the site of excision and were on average 2000/cm2 and 12 mm on the foreleg, 1000/cm2 and 30 mm on the abdomen and 1700/cm2 and 30 mm on the back. The corresponding counts in the calves were higher but the hairs were shorter. The rectal temperatures ranged from 38 to 40 degrees C independently of the ambient temperature. The dependence of the skin temperature on the ambient temperature was complex in living animals. The dependence was strongest in the legs. The skin temperature of the excised samples depended rather linearly on the ambient temperature. It is concluded that the reindeer can maintain its body temperature also in severe cold although the extremities show characteristics of heterothermia.  相似文献   

4.
Thermoregulatory benefits of cold-induced changes in breathing pattern and mechanism(s) by which cold induces hypoventilation were investigated using male Holstein calves (1-3 mo old). Effects of ambient temperatures (Ta) between 4 and 18 degrees C on ventilatory parameters and respiratory heat loss (RHL) were determined in four calves. As Ta decreased, respiratory frequency decreased 29%, tidal volume increased 35%, total ventilation and RHL did not change, and the percentage of metabolic rate attributed to RHL decreased 26%. Total ventilation was stimulated by increasing inspired CO2 in six calves (Ta 4-6 degrees C), and a positive relationship existed between respiratory frequency and expired air temperature. Therefore, cold-exposed calves conserve respiratory heat by decreasing expired air temperature and dead space ventilation. Compared with thermoneutral exposure (16-18 degrees C), hypoventilation was induced by airway cold exposure (4-6 degrees C) alone and by exposing the body but not the airways to cold. Blocking nasal thermoreceptors with topical lidocaine during airway cold exposure prevented the ventilatory response but did not lower hypothalamic temperature. Hypothalamic cooling (Ta 16-18 degrees C) did not produce a ventilatory response. Thus, airway temperature but not hypothalamic temperature appears to control ventilation in cold-exposed calves.  相似文献   

5.
The role of the rabbit's ear in cold acclimation was studied by varying the temperature of a climatic room in the range from -10 to +30 degrees C; The skin temperature in a nonanesthetized rabbit's ear showed a characteristic response to changes in ambient temperatures; plotting the ear temperature against the ambient temperature yielded an S-shaped curve. The mean ambient temperature corresponding to the inflection point on the S-shaped curve shifted significantly from about 13 degrees C to about 8 degrees C after cold acclimated of a group fed for 7 wk at -10 degrees C. The shift of the S-shaped curve after cold acclimation may not be due to the change in the norepinephrine sensitivity of the vascular beds of the ear: the effect of norepinephrine on the pressure-flow curve in the isolated rabbit's ear was almost unchanged between the control and the cold-acclimated groups. It is proposed that the shift of the inflection point gives a qualitative index of the acclimated state of the rabbit at a particular temperature.  相似文献   

6.
Surface temperatures were measured in euthermic woodchucks (Marmota monax) using infrared thermography across a range of ambient temperatures from -10 degrees C to 32 degrees C. The woodchuck keeps surface temperature of the peripalpebral region uniformly high, while head and body surfaces change proportionally with ambient temperature. When ambient temperature was below 0 degrees C, all surface temperatures increased which prevents freezing. At no point did the animals appear to be unable to regulate heat exchange. This species appears to be especially well adapted to the higher temperatures it encounters in its range. Vasomotion in the feet and to a lesser extent in the pinnae was used to regulate heat loss. At ambient temperature of 32 degrees C, mean temperatures of nose surfaces were 0.2 degrees C and 0.3 degrees C less than ambient temperature suggesting a type of counter current cooling mechanism may be present.  相似文献   

7.
1. Evaporative heat loss, O2 consumption, CO2 production, and internal body temperature were measured in unanesthetized, unrestrained bobwhite (Colinus virginianus) at specific ambient temperatures (Ta). 2. No significant change in body temperature occurred at any Ta tested, but metabolic heat production (H) increased from 42.17 W/m2 at Ta 35 degrees C to 102.89 W/m2 at Ta 10 degrees C. 3. Evaporative heat loss (E) increased approximately two-fold from Ta 10-35 degrees C, with E/H increasing exponentially over the same temperature range. 4. No significant change in thermal insulation occurred from Ta 10-30 degrees C. 5. Combined convective and radiative heat transfer for the bobwhite was 2.96 W/m2 X C from Ta 10-35 degrees C.  相似文献   

8.
With the help of thermonetry and general calorimetry body temperature and heat production in ambient temperatures 20 degrees C, 28 degrees C, 33 degrees C were recorded. The experiments showed, that at the temperature 20 degrees C the rectal temperature was changing very little. But in ambient temperature 33 degrees C the rectal temperature was 40.5 +/- 0.1 degrees C.  相似文献   

9.
Six male New Zealand white rabbits were individually exposed to 600 MHz radiofrequency (RF) radiation for 90 min in a waveguide exposure system at an ambient temperature (Ta) of 20 or 30 degrees C. Immediately after exposure, the rabbit was removed from the exposure chamber and its colonic and ear skin temperatures were quickly measured. The whole-body specific absorption rate (SAR) required to increase colonic and ear skin temperature was determined. At a Ta of 20 degrees C the threshold SAR for elevating colonic and ear skin temperature was 0.64 and 0.26 W/kg, respectively. At a Ta of 30 degrees C the threshold SARs were slightly less than at 20 degrees C, with values of 0.26 W/kg for elevating colonic temperature and 0.19 W/kg for elevating ear skin temperature. The relationship between heat load and elevation in deep body temperature shown in this study at 600 MHz is similar to past studies which employed much higher frequencies of RF radiation (2450-2884 MHz). On the other hand, comparison of these data with studies on exercise-induced heat production and thermoregulation in the rabbit suggest that the relationship between heat gain and elevation in body temperature in exercise and from exposure to RF radiation may differ considerably. When combined with other studies, it was shown that the logarithm of the SAR required for a 1.0 degree C elevation in deep body temperature of the rabbit, rat, hamster, and mouse was inversely related to the logarithm of body mass. The results of this study are consistent with the conclusion that body mass strongly influences thermoregulatory sensitivity of the aforementioned laboratory mammals during exposure to RF radiation.  相似文献   

10.
The metabolic, thermal, and cardiovascular responses of two male Caucasians to 1 2 h exposure to ambient temperature ranging between 28 degrees C and 5 degrees C were studied and related to the respective ambient temperatures. The metabolic heat production increased linearly with decreasing ambient temperature, where heat production (kcal times m- minus 2 times h- minus 1) = minus 2.79 Ta degrees C + 103.4, r = -0.97, P smaller than 0.001. During all exposures below 28 degrees C, the rate of decrease in mean skin temperature (Tsk) was found to be an exponential function dependent upon the ambient temperature (Ta) and the time of exposure. Reestablishment of Tsk steady state occurred at 90-120 min of exposure, and the time needed to attain steady state was linearly related to decreasing Ta. The net result was that a constant ratio of 1.5 of the external thermal gradient to the internal thermal gradient was obtained, and at all experimental temperatures, the whole body heat transfer coefficient remained constant. Cardiac output was inversely related to decreasing Ta, where cardiac output (Q) = minus 0.25 Ta degrees C + 14.0, r = minus 0.92, P smaller than 0.01. However, the primary reason for the increased Q, the stroke output, was also described as a third-order polynomial, although the increasing stroke volume throughout the Ta range (28-5 degrees C) was linearly related to decreasing ambients. The non-linear response of this parameter which occurred at 20 degrees C larger than or equal to Ta larger than or equal to 10 degrees C suggested that the organism's cardiac output response was an integration of the depressed heart rate response and the increasing stroke output at these temperatures.  相似文献   

11.
1. Temperatures of different body surface regions and deep body temperature (Tb) of unrestrained adult Mongolia gerbils exposed to ambient temperatures (Ta) of -10-35 degrees C were measured using infrared (i.r.) thermography and a thermocouple. 2. A strong positive linear relationship between the surface temperature and Ta was found. For Ta range -4-35 degrees C, the slope was lowest for the areas around the eyes and dorsal head, and steepest for the body extremities. At -10 degrees C, surface temperatures of the areas around the eyes and dorsal head were significantly lower then predicted. 3. Tb was lowest at Ta of 25 and 30 degrees C, increased at all temperatures above and up to Ta of -4 degrees C below this range, and began decline at -10 degrees C. 4. The thermoneutral zone (TNZ) is probably between 28 and 32 degrees C, and the absolute lower critical temperature (Tabsl) is probably -4 degrees C. 5. The Mongolian gerbil shows little control of surface temperature and in contrast to larger mammals it has not developed any special thermoregulatory surface areas to regulate heat exchange with its environment. At temperatures below -4 degrees C, this species is unable to maintain the surface temperature of body extremities above the freezing point. 6. It is suggested that the Mongolian gerbil uses mainly behavioral and ecological adaptive strategies to attenuate the stressful effects of its habitat.  相似文献   

12.
Although it is generally held that panting is a physiological mechanism for the regulation of brain temperature during heat stress, a number of studies have pointed to the importance of peripheral input for the initiation of the panting response in a variety of animals. By presenting ambient heat loads of 47 degrees, 54 degrees, 58 degrees, and 65 degrees C, and measuring skin, ear and core temperatures of the desert iguana, Dipsosaurus dorsalis, at the onset of panting, we found that the skin temperature at panting onset was independent of ambient heat load. This suggests that skin (peripheral) temperature is the body temperature on which the central thermoregulatory center cues to initiate thermal panting. Peripheral temperature control of panting was retained when the plasma osmolality of the desert iguana was increased by 100 mOsm/kg H2O to simulate dehydration. Dehydration to 80% initial body weight (IBW) resulted in a progressive increase in panting threshold (skin) from 42 degrees C for untreated lizards to 42.5 degrees C at 90% IBW to 43.3 degrees C at 80% IBW. Injection of 80% IBW lizards with a volume of 10 mM NaCl equivalent to weight loss resulted in a decrease in panting threshold to 40.8 degrees C. Injection with 1% body weight 3000 mM NaCl produced a dramatic increase in panting threshold to 45.9 degrees C. These data suggest that the desert iguana responds to dehydration by elevating panting threshold, thus promoting water conservation. These data also suggest that changes in plasma osmolality may be involved in the "setting" of panting threshold.  相似文献   

13.
Accommodating weanling horses in loose housing (sleeping hall with deep-litter bed and paddock) environments in winter at northern latitudes exposes the nonhuman animals to low ambient temperatures. We determined the heat loss of nine weanling horses in a cold environment by infrared thermography to assess their thermoregulatory capacity. The rate of heat loss was 73.5 to 98.7 W/m2 from the neck and 69.9 to 94.3 W/m2 from the trunk. The heat loss was higher at -16 degrees C than at 0 degrees C and -9 degrees C (p相似文献   

14.
In 9 rabbits the effect of intravenous administration of E. coli pyrogen 0.5 microgram/kg on the reaction of selective brain cooling was studied at ambient temperatures of 20, 30 and 40 degrees C. In the freely moving animals the temperatures of the brain, carotid artery and nuchal muscles were measured with an accuracy down to 0.05 degree C and the temperatures of the ear pinna and nasal mucosa were measured accurate to 0.5 degree C. The respiratory rate was measured as well. It was found that the spontaneous febrile reaction without the component of passive hyperthermia failed to cause selective brain cooling, even if its temperature reached higher values than in case of brain temperature rise caused only by high ambient temperature. On the other hand, when the high ambient temperature caused thermal panting, pyrogen administration at an ambient temperature of 30 degrees C could reduce panting, while at an ambient temperature of 40 degrees C intense panting initiated prior to the appearance of the febrile reaction and was associated with the fever and outlasted it.  相似文献   

15.
Metabolism and thermoregulation were studied for the first time in the Cabrera vole (Microtus cabrerae), an endemic and threatened rodent of the Iberian Peninsula. Low values of resting metabolic rate (RMR) were registered (1.13 mlO(2) g(-1) h(-1)) at the lower limit of the thermoneutral zone (TNZ) (around 33.5 degrees C). Body temperature increased near the TNZ up to 37.3 degrees C but remained stable, around 36 degrees C, at ambient temperatures below 25 degrees C. Values of thermal conductance remained quite stable at ambient temperatures of 10-25 degrees C (0.144-0.160 mlO(2) g(-1) h(-1) degrees C) and increased to 0.301 mlO(2) g(-1) h(-1) degrees C at 33.5 degrees C. Data revealed that M. cabrerae developed a highly adaptive ability of conserving energy and lowering the metabolic cost of thermoregulation at high ambient temperatures, allowing the body temperature to approximate that of the environment and exhibiting low resting metabolic rate and high conductance.  相似文献   

16.
The spadix of skunk cabbage, Symplocarpus foetidus, is capable of maintaining an internal temperature of around 20 degrees C even when the ambient temperature drops to around 0 degrees C. To determine the crucial structure that is required for detection of ambient temperature signals, detailed measurements of the temperatures of the spadix were made under field conditions. The spadix temperature was well regulated even when the spathe or the leaf of the plant was removed. Furthermore, maintenance of the temperature of the central stalk at either 10 or 20 degrees C had no effect on the thermoregulation when the ambient temperature increased from 10 to 25 degrees C or decreased from 20 to 8 degrees C. Therefore, it seemed that the heat production in the spadix required neither the spathe, the leaf, nor the central stalk for perception of the external temperature signals. Finally, analysis of sugar composition in xylem exudates showed that the concentrations of sucrose, glucose, and fructose, all of which are potential energy sources of thermogenesis, did not change significantly at different ambient temperatures. It is concluded that the spadix is a unique organ in which the perception of ambient temperature signals and heat production occurs in S. foetidus.  相似文献   

17.
The temperature dependence of C3 photosynthesis is known to vary according to the growth environment. Atmospheric CO2 concentration and temperature are predicted to increase with climate change. To test whether long-term growth in elevated CO2 and temperature modifies photosynthesis temperature response, wheat (Triticum aestivum L.) was grown in ambient CO2 (370 micromol mol(-1)) and elevated CO2 (700 micromol mol(-1)) combined with ambient temperatures and 4 degrees C warmer ones, using temperature gradient chambers in the field. Flag leaf photosynthesis was measured at temperatures ranging from 20 to 35 degrees C and varying CO2 concentrations between ear emergence and anthesis. The maximum rate of carboxylation was determined in vitro in the first year of the experiment and from the photosynthesis-intercellular CO2 response in the second year. With measurement CO2 concentrations of 330 micromol mol(-1) or lower, growth temperature had no effect on flag leaf photosynthesis in plants grown in ambient CO2, while it increased photosynthesis in elevated growth CO2. However, warmer growth temperatures did not modify the response of photosynthesis to measurement temperatures from 20 to 35 degrees C. A central finding of this study was that the increase with temperature in photosynthesis and the photosynthesis temperature optimum were significantly higher in plants grown in elevated rather than ambient CO2. In association with this, growth in elevated CO2 increased the temperature response (activation energy) of the maximum rate of carboxylation. The results provide field evidence that growth under CO2 enrichment enhances the response of Rubisco activity to temperature in wheat.  相似文献   

18.
Body temperature and metabolic rate were recorded continuously in two groups of marmots either exposed to seasonally decreasing ambient temperature (15 to 0 degrees C) over the entire hibernation season or to short-duration temperature changes during midwinter. Hibernation bouts were characterized by an initial 95% reduction of metabolic rate facilitating the drop in body temperature and by rhythmic fluctuations during continued hibernation. During midwinter, we observed a constant minimal metabolic rate of 13.6 ml O(2) x kg(-1) x h(-1) between 5 and 15 degrees C ambient temperature, although body temperature increased from 7.8 to 17.6 degrees C, and a proportional increase of metabolic rate below 5 degrees C ambient temperature. This apparent lack of a Q(10) effect shows that energy expenditure is actively downregulated and controlled at a minimum level despite changes in body temperature. However, thermal conductance stayed minimal (7.65 +/- 1.95 ml O(2) x kg(-1) x h(-1) x degrees C(-1)) at all temperatures, thus slowing down cooling velocity when entering hibernation. Basal metabolic rate of summer-active marmots was double that of winter-fasting marmots (370 vs. 190 ml O(2) x kg(-1) x h(-1)). In summary, we provide strong evidence that hibernation is not only a voluntary but a well-regulated strategy to counter food shortage and increased energy demands during winter.  相似文献   

19.
Kleinschmidt JH  Tamm LK 《Biochemistry》1999,38(16):4996-5005
The mechanism of insertion and folding of an integral membrane protein has been investigated with the beta-barrel forming outer membrane protein A (OmpA) of Escherichia coli. This work describes a new approach to this problem by combining structural information obtained from tryptophan fluorescence quenching at different depths in the lipid bilayer with the kinetics of the refolding process. Experiments carried out over a temperature range between 2 and 40 degrees C allowed us to detect, trap, and characterize previously unidentified folding intermediates on the pathway of OmpA insertion and folding into lipid bilayers. Three membrane-bound intermediates were found in which the average distances of the Trps were 14-16, 10-11, and 0-5 A, respectively, from the bilayer center. The first folding intermediate is stable at 2 degrees C for at least 1 h. A second intermediate has been isolated at temperatures between 7 and 20 degrees C. The Trps move 4-5 A closer to the center of the bilayer at this stage. Subsequently, in an intermediate that is observable at 26-28 degrees C, the Trps move another 5-10 A closer to the center of the bilayer. The final (native) structure is observed at higher temperatures of refolding. In this structure, the Trps are located on average about 9-10 A from the bilayer center. Monitoring the evolution of Trp fluorescence quenching by a set of brominated lipids during refolding at various temperatures therefore allowed us to identify and characterize intermediate states in the folding process of an integral membrane protein.  相似文献   

20.
Honey bees (Apis mellifera carnica, Apidae, Hymenoptera) visited a pond in order to collect water. During their stays at the pond the body surface temperature of water foragers was measured using contactless thermography. Irrespective of the ambient temperature (T(A)) which ranged from 13.6 to 27.2 degrees C, the water carriers reached thoracic temperatures of 36-38.8 degrees C (mean values of the measuring periods). The maximum thoracic value of an individual bee was 44.5 degrees C. At higher T(A) (20.9-27.2 degrees C) head and abdomen were only about 3 degrees C and 2 degrees C on the average higher than the surroundings, respectively. In the lower range of T(A) (13.6-16.6 degrees C), however, the bees warmed their heads up to 29.2 degrees C (13 degrees C above T(A)) and the abdomen up to 23.3 degrees C (7.1 degrees C above T(A); mean values of the measuring periods).The head and abdomen were even provided independently of one another with heat from the thorax. At a higher T(A) only little heat came from the heated thorax into the abdomen, at a cooler T(A) (13.6-16.6 degrees C) more heat reached the abdomen. In all probability, at a higher T(A) only a small amount of haemolymph was pumped from the thorax into the abdomen; the most warm blood probably circulated in the head-thorax area. The average duration of stays at the pond decreased linearly from 110 to 42 s with rising T(A). Head and thorax showed great fluctuations of temperature. For example, the head was heated by 4.6 degrees C within 25 s, the thorax by 6.1 degrees C within 30 s.Foragers drinking sucrose solution are known to increase their thoracic temperature with rising concentration of the sucrose solution. The water foragers had thoracic temperatures similar to that of bees feeding on 0.5 molar sucrose solution. It is hypothesized that the foraging motivation of both groups was similar and therefore they regulated their thoraces at the same temperature level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号