首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The adhesion of Campylobacter jejuni to chicken skin, along with the associated morphological changes under aerobic conditions at 4, 25, and 37 degrees C and microaerobic (O2 5%, CO2 10%, N2 85%) conditions, were investigated using confocal laser scanning microscopy (CLSM), flow cytometry, and plate counting. The morphological change of C. jejuni from a spiral shape to a coccoid form or VBNC form (viable but nonculturable form) progressed rapidly under aerobic conditions at 25, 37, and 4 degrees C. As regards adhesion, the C. jejuni cells were mostly located in the crevices and feather follicles of the chicken skin, where the cells in the feather follicles floated freely in the entrapped water, even after the skin was rinsed quite thoroughly. CLSM also revealed the penetration of some spiral-shaped C. jejuni cells into the chicken skin. Even after changing their shape at various temperatures, coccoid-form C. jejuni cells were still found in the crevices and feather follicles of the chicken skin.  相似文献   

2.
Morphology of viable but non-culturable Vibrio cholerae was monitored for 2 years by scanning and transmission electron microscopy. Morphological changes included very small coccoid forms, after extended incubation at 4 degrees C and room temperature, and sequential transformation from curved rods to irregular (approximately 1 microm) rods to approximately 0.8 microm coccoid cells and, ultimately, to tiny coccoid forms (0.07-0.4 microm). Irregular rod-shaped and coccoid cells were equally distributed in microcosms during the first 30-60 days of incubation at both temperatures, but only coccoid cells were observed after incubation for 60 days at 4 degrees C. When V. cholerae O1 and O139, maintained for 30-60 days at both temperatures, were heated to 45 degrees C for 60 s, after serial passage through 0.45 microm and 0.1 microm filters, and plating on Luria-Bertania (LB) agar, only cells larger than 1 microm yielded colonies on LB agar. Approximately 0.1% of heat-treated cultures were culturable. Cell division in the smallest coccoid cells was observed, yielding daughter cells of equal size, whereas other coccoid cells revealed bleb-like, cell wall evagination, followed by transfer of nuclear material. Coccoid cells of V. cholerae O1 and O139 incubated at 4 degrees C for more than 1 year remained substrate responsive and antigenic.  相似文献   

3.
Recovery of viable but non-culturable Campylobacter jejuni.   总被引:19,自引:0,他引:19  
Suspensions of Campylobacter jejuni became non-culturable after storage in sterilized pond water at 4 degrees C for periods between 18 and 28 d, depending on the strain. Suspensions of four strains of C. jejuni that had been in water for 6 weeks, and shown to be non-culturable, were fed to suckling mice. Colonization of mice was established with two of the strains and failed with the other two strains. Examination of these suspensions under the electron microscope showed some cocci having the appearance of being viable, but most cocci and all remaining spiral forms showed extensive degeneration. The results indicate that non-culturable coccal forms of C. jejuni are capable of infecting mice but that this property may differ between strains.  相似文献   

4.
Peptidoglycans (PG) from Campylobacter coli, Campylobacter jejuni, and Campylobacter fetus were composed of muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid in a molar ratio of 1.1:1:1.7:1.1:09. Thirty percent of the amino groups of diaminopimelic acid were involved in cross-linkages between peptides. During cultivation, C. coli and C. jejuni changed from a spiral to a coccoid form. In C. coli, we could isolate PG only from the spiral forms in yields of 0.8-1.2% by dry weight. C. fetus did not change to a coccoid form, and always contained PG. Thus, it is possible that the morphological transformation from the spirals to the coccoid forms of C. coli and C. jejuni is accompanied by, and probably due to, the degradation of PG.  相似文献   

5.
Campylobacter jejuni undergoes a dramatic morphological transformation from a corkscrew-shaped rod to a coccoid form in response to unfavorable conditions. It has been speculated that the coccoid plays an important role in the survival and dissemination of C. jejuni but questions still remain regarding the viability of coccoid cells. Characterization of the genome of coccoid cells found that newly formed coccoid cells (i.e., 1–3 days) had a SmaI-digestion profile identical to that of spiral-shaped cells; however, there was a progressive degradation of the DNA with continued incubation at 37°C. Concomitant with genome degradation was the detection of DNA in supernatants of coccoid cells. In contrast, cells incubated at 4°C retained a spiral shape and their SmaI-digestion profile for 8 weeks and released little DNA into the medium. Thus, low temperature inhibited both coccoid formation and genome degradation. Collectively, these data support the theory that the coccoid form of C. jejuni is a manifestation of cellular degradation and spiral-shaped cells, or possibly coccoid cells formed at low temperature, are the most probable candidates for a viable but nonculturable form of this pathogen.  相似文献   

6.
AIMS: To evaluate the survival of Campylobacter jejuni relative to that of Escherichia coli in groundwater microcosms varying in nutrient composition. METHODS AND RESULTS: Studies were conducted in groundwater and deionized water incubated for up to 470 days at 4 degrees C. Samples were taken for culturable and total cell counts, nutrient and molecular analysis. Die-off in groundwater microcosms was between 2.5 and 13 times faster for C. jejuni than for E. coli. Campylobacter jejuni had the lowest decay rate and longest culturability in microcosms with higher dissolved organic carbon (4 mg l(-1)). Escherichia coli survival was the greatest when the total dissolved nitrogen (12.0 mg l(-1)) was high. The transition of C. jejuni to the coccoid stage was independent of culturability. CONCLUSION: The differences in the duration of survival and response to water nutrient composition between the two organisms suggest that E. coli may be present in the waters much longer and respond to water composition much differently than C. jejuni. SIGNIFICANCE AND IMPACT OF THE STUDY: The data from these studies would aid in the evaluation of the utility of E. coli as an indicator of C. jejuni. This study also provided new information about the effect of nutrient composition on C. jejuni viability.  相似文献   

7.
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39 degrees C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50 degrees C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions.  相似文献   

8.
Electron microscopic studies of Campylobacter revealed that different morphological forms predominate at different parts of a colony. At the periphery, cells were almost all spirals, while in the center of the colony cells were mainly coccus shaped. Unusual ring-shaped cells, "donuts", were observed in the raised, peripheral region of the colony. Donut or ring forms have not previously been reported for Campylobacter organisms. Our data indicate that young or actively growing cells are mainly spiral shaped. Older cells undergo a degenerative change to coccoid forms. The donut shape appears to be an intermediate stage between spirals and cocci. Comparisons of plate counts of actively growing and inactive cells confirmed that coccoid cells are probably nonviable.  相似文献   

9.
We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells.  相似文献   

10.
Coccoid forms in cultures of a strain of the enteric pathogen Campylobacter jejuni were investigated. A culture containing 100% coccoid forms was non-viable. Coccoid forms had a lesser content of cytoplasmic components and nucleic acids than rods of C. jejuni. During the conversion to coccoid forms nucleotides leaked from the cells. The results of treatments with ionic and non-ionic detergents, and lysozyme and ethylenediaminetetraacetic acid indicated a changed cell wall in coccoid forms compared with rods. Using rate-zonal centrifugation coccoid forms were found to be less dense than rods. The results of this study indicate that the coccoid form of C. jejuni ATCC 29428 is a degenerate cell form which is undergoing cellular degradation.  相似文献   

11.
M M Lleo  P Canepari    G Satta 《Journal of bacteriology》1990,172(7):3758-3771
The two-competing-sites model for peptidoglycan assembly for bacterial cell shape regulation suggests that in rods, bacterial cell shape depends on the balance between two reactions (sites), one responsible for lateral wall elongation and the other responsible for septum formation. The two reactions compete with each other so that no lateral wall can be formed during septum formation and vice versa. When the site for lateral wall elongation overcomes that for septum formation, long rods or filaments are formed and cell division may be blocked. When the reaction leading to septum formation is hyperactive compared with the other, coccobacilli or cocci are formed. Other bacteria carry only one site for peptidoglycan assembly and can grow only as cocci. The two-competing-sites model predicts that two different types of cocci exist (among both morphology mutants and wild-type strains); one carries only the site for septum formation, whereas the other also carries the site for lateral wall elongation, the former site predominating over the latter. As a consequence of the inhibition (by antibiotics or by mutations) of septum formation in wild-type cocci of various species and in coccoid morphology mutants, some cocci are expected to undergo transition to rod shape and others are not. We have evaluated these predictions and show that they are in agreement. In fact, we found that among wild-type cocci belonging to 13 species, those of 6 species formed rods, whereas the remaining organisms maintained their coccal shape when septa were inhibited by antibiotics. Some coccoid morphology mutants of rod-shaped bacteria underwent coccus-to-rod transition after septum inhibition by antibiotics, whereas others maintained their coccal shape. When a mutation that causes septum inhibition was expressed in a morphology mutant of Klebsiella pneumoniae grown as a coccus, transition to rod shape was observed. A total of 914 mutants unable to form colonies at 42 degrees C were isolated from the coccoid species mentioned above. Between 75 and 95% of the mutants isolated from the species that formed rods when septum formation was inhibited by antibiotics but none of those isolated from the others underwent coccus-to-rod transition upon incubation at the nonpermissive temperature.  相似文献   

12.
Coccoid forms in cultures of a strain of the enteric pathogen Campylobacter jejuni were investigated. A culture containing 100% coccoid forms was non-viable. Coccoid forms had a lesser content of cytoplasmic components and nucleic acids than rods of C. jejuni. During the conversion to coccoid forms nucleotides leaked from the cells. The results of treatments with ionic and non-ionic detergents, and lysozyme and ethylenediaminetetraacetic acid indicated a changed cell wall in coccoid forms compared with rods. Using rate-zonal centrifugation coccoid forms were found to be less dense than rods. The results of this study indicate that the coccoid form of C. jejuni ATCC 29428 is a degenerate cell form which is undergoing cellular degradation.  相似文献   

13.
Surface growth of an Acinetobacter sp. cultivated under several nutrient regimens was examined by using continuous-flow slide culture, phase-contrast microscopy, scanning confocal laser microscopy, and computer image analysis. Irrigation of attached coccoid stationary-phase Acinetobacter sp. cells with high-nutrient medium resulted in a transition from coccoid to bacillar morphology. Digital image analysis revealed that this transition was biphasic. During phase I, both the length and the width of cells increased. In contrast, cell width remained constant during phase II, while both cell length and cell area increased at a rate greater than in phase I. Cells were capable of growth and division without morphological transition when irrigated with a low-nutrient medium. Rod-shaped cells reverted to cocci by reduction-division when irrigated with starvation medium. This resulted in conservation of cell area (biomass) with an increase in cell number. In addition, the changes in cell morphology were accompanied by changes in the stability of cell attachment. During phase I, coccoid cells remained firmly attached. Following transition in high-nutrient medium, bacillar cells displayed detachment, transient attachment, and drifting behaviors, resulting in a spreading colonization pattern. In contrast, cells irrigated with a low-nutrient medium remained firmly attached to the surface and eventually formed tightly packed microcolonies. It is hypothesized that the coccoid and bacillar Acinetobacter sp. morphotypes and associated behavior represent specialized physiological adaptations for attachment and colonization in low-nutrient systems (coccoid morphotype) or dispersion under high-nutrient conditions (bacillar morphotype).  相似文献   

14.
In many systems transfer between the endoplasmic reticulum and the Golgi apparatus is blocked at temperatures below 16 degrees C. In virus-infected cells in culture, a special membrane compartment is seen to accumulate. Our studies with rat liver show a similar response to temperature both in situ with slices and in vitro with isolated transitional endoplasmic reticulum fractions. With isolated transitional endoplasmic reticulum fractions, when incubated in the presence of nucleoside triphosphate and a cytosol fraction, temperature dependent formation of vesicles occurred with a Q10 of approximately 2 but was apparent only at temperatures greater than 12 degrees C. A similar response was seen in situ at 12 degrees C and 16 degrees C where fusion of transition vesicles with cis Golgi apparatus, but not their formation, was blocked and transition vesicles accumulated in large numbers. At 18 degrees C and below and especially at 8 degrees C and 12 degrees C, the cells responded by accumulating smooth tubular transitional membranes near the cis Golgi apparatus face. With cells and tissue slices at 20 degrees C neither transition vesicles nor the smooth tubular elements accumulated. Those transition vesicles which formed at 37 degrees C were of a greater diameter than those formed at 4 degrees C both in situ and in vitro. The findings show parallel responses between the temperature dependency of transition vesicle formation in vitro and in situ and suggest that a subpopulation of the transitional endoplasmic reticulum may be morphologically and functionally homologous to the 16 degrees C compartment observed in virally-infected cell lines grown at low temperatures.  相似文献   

15.
Bacillus stearothermophilus ATCC 12016 was unable to grow at temperatures below 40 degrees C. On incubating the bacteria at the temperatures, ATP in cells disappeared, ADP was accumulated and ATPase (EC 3.6.1.3) was inactivated. When the purified ATPase was incubated at the temperatures for 1 h with 0.17 mM ADP in the presence of MgCl2, the enzyme was completely inactivated. The inactivated enzyme was reactivated on dilution or dialysis or on warming at 65 degrees C. During the incubation of the enzyme sample, the absorbance spectrum of the enzyme changed. On further incubating the sample over 1.5 h, the second step of spectral change occurred together with the change of the circular dichrosim and the dissociation into a lower molecular weight species of the protein. When the enzyme was treated with ADP-MgCl2 at 65 degrees C, the inactivation and conformational change of the enzyme was not observed.  相似文献   

16.
We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells.  相似文献   

17.
Survival of Campylobacter jejuni at 4 and 20 degrees C was investigated by using cellular integrity, respiratory activity, two-dimensional (2D) protein profile, and intact DNA content as indicators of potential viability of nonculturable cells. Intact DNA content after 116 days, along with cellular integrity and respiring cells, was detected for up to 7 months at 4 degrees C by pulsed-field gel electrophoresis. Most changes in 2D protein profiles involved up- or down-regulation.  相似文献   

18.
19.
The present study was undertaken to establish whether molecular events leading to binding, transformation-activation, and nuclear translocation of cytoplasmic uterine estrogen receptor described for cell-free systems also occur in intact uterine cells. Cell suspensions were incubated at 0 degrees C or 37 degrees C with estradiol (E2) and specific binding to intracellular receptors was measured. The data demonstrate that saturation of specific estrogen binding sites occurs within 60 min at 37 degrees C and within 22 h at 0 degrees C, with a total of approximately 24,000 to 30,000 receptor sites per cell. At equilibrium, the total number and subcellular distribution of receptor . estradiol (R . E2) complexes formed in cells incubated at 0 degrees C or 37 degrees C were identical. Scatchard analysis of the equilibrium binding data yielded the same association constants for cytoplasmic and nuclear R . E2 formed in intact cells incubated at either temperature. Sucrose density gradient analysis of nuclear and cytoplasmic R . E2 formed in intact cells at 0 degrees C or 37 degrees C showed that at both temperatures, the nuclear R . E2 had a 5 S sedimentation coefficient; at both temperatures, a 5 S cytosol R . E2 was detected; only in the 0 degrees C incubation, an additional 4 S cytosol R . E2 was found. These results suggest that the molecular interactions regulating the dynamics of estrogen binding in the intact cell are similar at both physiological and low temperatures.  相似文献   

20.
The following study was carried out with the aim of widening our understanding of the thermoadaptive mechanisms of the membrane of thermophiles, using Bacillus stearothermophilus var. nondiastaticus as test-organism. The phospholipids and their acyl chain composition of this Bacillus studied in relation to the physical properties of its membrane from bacteria grown at various temperatures. Phospholipids account for 68-75 weight% of the total lipid in cells grown at 45, 55 or 65 degrees C. Phosphatidylglycerol and diphosphatidylglycerol constitute up to 90% of the total phospholipids; no amino phospholipids were found. Increasing the growth temperatures from 45 degrees to 65 degrees C caused an approximately 4-fold decrease in the proportion of the branched-chain fatty acids and a 2-fold increase in the amount of the saturated acyl chains. The reduced proportion of the branched fatty acids was mainly due to a decrease in their anteiso forms. Unsaturated fatty acids were not produced by cells grown at 65 degrees C. In accordance with the fatty acid composition, the molecular packing of phospholipids in monolayers was more expanded with phospholipids from 45 degrees C grown cells as compared with cultures grown at 55 degrees C. The thermotropic gel to liquid-crystalline phase transition of the membrane lipids was monitored by differential scanning calorimetry and fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. With increase of the growth temperature the phase transition was progressively shifted to higher but narrower range of temperatures. Completion of the lipid melting occurred always at temperatures below those employed for growth. A constructed phase diagram enabled to relate the growth temperature, the fatty acid composition and the lipid apparent microviscosity at temperatures not used in the present study for growth of the thermophile. The minimum temperature for growth and the upper boundary temperature of the least saturated lipid crystallization were extrapolated in this manner; they correspond to the experimentally determined minimal growth temperature. The apparent microviscosity, a measure of membrane order, decreased gradually and conspicuously as the growth temperature was elevated. The delimiting apparent microviscosity values, at the maximal (65 degrees C) and minimal (41 degrees C) growth temperatures were 0.8 and 1.8 poise, respectively. This lack of rigorous homeostatic control of the bulk lipid viscosity prompted reevaluation of the physiological significance of 'homeoviscous adaptation' in Bacillus stearothermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号