首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe anemia is a lethal complication of Plasmodium falciparum malaria, particularly in children. Recent studies in children with severe P. falciparum anemia have demonstrated elevated levels of E-bound Abs, reduced E-associated complement receptor 1 (CR1) and decay-accelerating factor (DAF), and pronounced splenic enlargement, suggesting a mechanism for E loss involving Abs, complement, and phagocytosis. Motivated by these reports, we have developed an in vitro model in which human E with Abs and complement bound to CR1, DAF, or glycophorin A are incubated with model human macrophages (the THP-1 cell line). Previous work has demonstrated that immune complex (IC) substrates bound to E CR1, either by an Ab or via C3b, are transferred to macrophages with loss of CR1. In this study, we report that IC bound to DAF or glycophorin A by an Ab linkage are also transferred to macrophages. DAF is lost from the E during the transfer of DAF-bound IC, but the transfer of CR1-bound IC does not lead to a significant loss of DAF. Using glycophorin A-bound IC, we observe competition between transfer of IC and phagocytosis of the E: a fraction (相似文献   

2.
B cell complement receptor 2 transfer reaction   总被引:3,自引:0,他引:3  
The B cell C receptor specific for C3dg (CR2) shares a number of features with the primate E C receptor (CR1). Previously, we have demonstrated, both in vitro and in animal models, that immune complexes (IC) bound to primate E CR1, either via C opsonization or by means of bispecific mAb complexes, can be transferred to acceptor macrophages in a process that also removes CR1 from the E. We have now extended this paradigm, the transfer reaction, to include B cell CR2. We used both flow cytometry and fluorescence microscopy to demonstrate that IC bound to Raji cell CR2, either via C opsonization or through the use of an anti-CR2 mAb, are transferred to acceptor THP-1 cells. This reaction, which appears to require Fc recognition of IgG bound to Raji cell CR2, also leads to transfer of CR2. Additional support for the B cell transfer reaction is provided in a prototype study in a monkey model in which IC bound to B cell CR2 are localized to the spleen. These findings may have important implications with respect to defining the role of C in IC handling during the normal immune response.  相似文献   

3.
We isolated the IgM fraction from the plasma of an SLE patient with high titer anti-dsDNA antibodies and prepared soluble IgM/dsDNA immune complexes (IC) that fixed C and captured sufficient C3b to bind to human E via their C3b/C4b receptor, CR1 (immune adherence, IA). We used specific 125I-labeled mAb to IgM, C3b, and IgG to measure the stoichiometries of these C-opsonized IC. They contained 10 to 60 C3b and 10 to 30 IgM per PM2 dsDNA, had no detectable IgG, and the vast majority of the C3b was bound to the IgM, and not to the dsDNA. These stoichiometries are in contrast to those we observed for comparable E-bound IC prepared with IgG anti-dsDNA antibodies (100 to 200 C3b, and 200 to 500 IgG). Our results help explain the greater lability of the IgM IC with respect to IA as evidenced by their plasma-mediated release from human E (presumably due to factor I), and confirm previous predictions of a lower density of "packing" of IgM on dsDNA, compared to IgG. The detailed stoichiometry of C3b capture by the IgM IC (typically 1.5 to 3 C3b per IgM) suggests that individual IgM molecules with multiple C3b facilitate IC binding to clusters of CR1. Finally, comparison of the IgM/dsDNA IC with other IgM IC which have been investigated with respect to C activation, and review of the proposed mechanism by which IgM activates C, suggests that the nature of the Ag plays a fundamental role in determining whether or not an IgM IC can activate C and participate in IA.  相似文献   

4.
The E C3b/C4b receptor (CR1) has been shown to rapidly bind large complement-fixing immune complexes (IC) both in vivo and in vitro. It has been proposed that E (RBC) CR1 act as a shuttle mechanism, binding circulating IC and transporting them to tissue macrophages, thereby preventing their deposition in target tissues. In this study we have established an in vitro model system with which to study the transfer of model IC from CR1 on the RBC surface to phagocytic cells. Aggregated IgG (AHG) was opsonized with C3b, bound to RBC CR1, and the binding of these RBC-bound IC by a human monocyte cell line (U937 cells) was examined. U937 binding of AHG from the RBC surface was complete within 2 min, whereas binding of the same AHG from solution required 30 to 60 min. Despite the difference in kinetics of binding, the total amount of IC bound by U937 cells at equilibrium was the same for RBC-bound AHG and for AHG in solution. The transfer of AHG from the RBC to the U937 cell did not require exogenous factor I and was not accompanied by binding of RBC to U937 cells or by erythrophagocytosis. Our data lend support to the hypothesis that binding of IC to RBC CR1 may facilitate the clearance of IC from the circulation by enhancing their uptake by phagocytic cells.  相似文献   

5.
Neonatal meningitis due to Escherichia coli K1 is a serious illness with unchanged morbidity and mortality rates for the last few decades. The lack of a comprehensive understanding of the mechanisms involved in the development of meningitis contributes to this poor outcome. Here, we demonstrate that depletion of macrophages in newborn mice renders the animals resistant to E. coli K1 induced meningitis. The entry of E. coli K1 into macrophages requires the interaction of outer membrane protein A (OmpA) of E. coli K1 with the alpha chain of Fcγ receptor I (FcγRIa, CD64) for which IgG opsonization is not necessary. Overexpression of full-length but not C-terminal truncated FcγRIa in COS-1 cells permits E. coli K1 to enter the cells. Moreover, OmpA binding to FcγRIa prevents the recruitment of the γ-chain and induces a different pattern of tyrosine phosphorylation of macrophage proteins compared to IgG2a induced phosphorylation. Of note, FcγRIa(-/-) mice are resistant to E. coli infection due to accelerated clearance of bacteria from circulation, which in turn was the result of increased expression of CR3 on macrophages. Reintroduction of human FcγRIa in mouse FcγRIa(-/-) macrophages in vitro increased bacterial survival by suppressing the expression of CR3. Adoptive transfer of wild type macrophages into FcγRIa(-/-) mice restored susceptibility to E. coli infection. Together, these results show that the interaction of FcγRI alpha chain with OmpA plays a key role in the development of neonatal meningitis by E. coli K1.  相似文献   

6.
Complement plays a critical role in the immune response by opsonizing immune complexes (IC) and thymus-independent type 2 Ags with C3 breakdown product C3dg, a CR2-specific ligand. We used a C3dg-opsonized IC model, anti-CR1/2 mAb 7G6, to investigate how such substrates are processed. We used RIA, whole body imaging, flow cytometry, and fluorescence immunohistochemistry to examine the disposition of 0.1- to 2-microg quantities of mAb 7G6 infused i.v. into BALB/c mice. The mAb is rapidly taken up by the spleen and binds preferentially to marginal zone (MZ) B cells; within 24 h, the MZ B cells relocate and transfer mAb 7G6 to follicular dendritic cells (FDC). Transfer occurs coincident with loss of the extracellular portion of MZ B cell CR2, suggesting that the process may be mediated by proteolysis of CR2. Intravenous infusion of an FDC-specific mAb does not induce comparable splenic localization or cellular reorganization, emphasizing the importance of MZ B cells in intrasplenic trafficking of bound substrates. We propose the following mechanism: binding of C3dg-opsonized IC to noncognate MZ B cells promotes migration of these cells to the white pulp, followed by CR2 proteolysis, which allows transfer of the opsonized IC to FDC, thus facilitating presentation of intact Ags to cognate B cells.  相似文献   

7.
Previous studies have shown that Ebola virus' secretory glycoprotein (sGP) binds to Fc gamma RIIIB (CD16b) and inhibits L-selectin shedding. In this study, we test the hypothesis that sGP interferes with the physical linkage between CR3 and Fc gamma RIIIB. Neutrophils were stained with rhodamine-conjugated anti-CD16b mAb (which does not inhibit sGP binding) and fluorescein-conjugated anti-CR3 mAb reagents and then incubated in media with or without sGP. Physical proximity between fluorochrome-labeled CR3 and Fc gamma RIIIB on individual cells was measured by resonance energy transfer (RET) imaging, quantitative RET microfluorometry, and single-cell imaging spectrophotometry. Cells incubated with control supernatants displayed a significant RET signal, indicative of physical proximity (<7 nm) between CR3 and Fc gamma RIIIB. In contrast, cells exposed to sGP showed a significant reduction in the CR3-Fc gamma RIIIB RET signal using these methods. Interestingly, colocalization and cocapping of CR3 and Fc gamma RIIIB were not affected, suggesting that the proximity of these two receptors is reduced without triggering dissociation. Thus, sGP alters the physical linkage between Fc gamma RIIIB and CR3.  相似文献   

8.
We have used direct binding isotherm analyses to measure the association constant (Ka) and number of binding sites for the binding of prepared complement-fixing antibody (Ab)/dsDNA immune complexes (IC) to human red blood cells (RBC). In order to generalize this study we have examined the binding reaction for a number of different anti-dsDNA Ab (from systemic lupus erythematosus plasmas), complement sources, RBC donors, and dsDNA sizes. The affinity of the IC for the RBC is quite high, and the Ka values fall within a narrow range (5 to 14 X 10(10) liter/mol). Similarly, the limiting stoichiometries for the number of IC bound per RBC were between 40 and 91. The very high affinity and limiting stoichiometries both suggest that the IC bind to the RBC via multiple contacts with clusters of complement receptor type 1 (CR1). Furthermore, we have used three specific monoclonal AB (mAb) to quantitate CR1 on human RBC in the presence and absence of bound IC. One of these Ab, mAb 1B4, is blocked from binding to the RBC if IC are previously bound, and we have used this observation to verify the multivalent nature of the interaction of complement-fixing IC with CR1 on human RBC.  相似文献   

9.
Patients with immune complex-(IC) mediated diseases frequently have low levels of CR1 on E. The present study was undertaken to determine the role of circulating IC in causing low E-CR1 levels. E-CR1 were enumerated by measuring the binding of anti-CR1 mAb (E11) and rabbit anti-CR1 antibodies (RbaCR1) to E. In addition, the distribution of CR1 among E was assessed by flow cytometry of E stained with E11 and RbaCR1 and by evaluating the binding of E11-coated fluorescent beads (E11-beads) to E. E11-beads bind to clusters of CR1 on E. Five cynomolgus monkeys (CYN) were preimmunized to bovine gamma-globulin (BGG). E-CR1 changes in these animals were assessed: 1) acutely, during the first 60 min after an infusion of BGG and 2) chronically, during daily administration of BGG infusions over 2 wk. Acutely, there was a decrease in the number of E-CR1 as measured by E11 binding to E (E11/CR1). This decrease was not attributable to occupancy of CR1 by IC because the decrease in E11/CR1 number persisted after the IC had been cleared from E. By comparing the E11/CR1 levels in arterial blood to hepatic vein blood (n = 5), or in pulmonary artery blood (n = 1), we determined that the acute decrease in E11/CR1 number did not occur whereas E circulated through liver, spleen, or lung. The decrease in E11/CR1 number required the binding of IC to E because it did not occur after BGG was infused into nonimmunized CYN (n = 2) or into a preimmunized complement-depleted CYN. The decrease in E11/CR1 number was not due to loss of CR1 from E because E11/CR1 number recovered 24 h after infusion of BGG and in addition, enumeration of E-CR1 with RbaCR1 and E11-beads did not reflect a decrease in E-CR1 number. After several daily BGG infusions there was a persistent decrease in E-CR1 levels and that decrease appeared to be mainly the result of loss of CR1 from E because the decrease was confirmed with all methods of E-CR1 measurement and because E-CR1 levels recovered only slowly after BGG infusions were discontinued. Both in vitro and in vivo IC bound preferentially to subpopulations of E, identified by their ability to bind multiple E11-beads and by their high intensity staining with the anti-CR1 antibodies E11 and RbaCR1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Incubation of precipitable immune complexes (IC) with fresh human serum or guinea pig serum resulted in solubilization of IC. When packed human E were added to human serum or guinea pig serum, binding of IC to the E occurred and IC solubilization was significantly inhibited. By contrast, SRBC did not bind IC nor inhibit IC solubilization. Because IC binding to human E is mediated by CR type 1 (CR1) we evaluated whether CR1 was responsible for the inhibition of IC solubilization. Human E were treated with trypsin or anti-CR1 mAb. Both treatments abrogated IC binding to human E but did not affect the ability of the human E to inhibit IC solubilization. Human E inhibited C activation by IC. Thus, incubation of IC in human serum caused significant activation of C3 and C5, but not C4. However, when IC were incubated in whole blood or with isolated human E and serum, C3 activation by IC was inhibited significantly. In addition, we demonstrated that the C3b generated during C activation by IC deposited on both IC and human E. Thus, human E may compete for nascent C3 generated during C activation by IC. In conclusion, human E inhibit both complement-mediated solubilization of IC and C activation by IC.  相似文献   

11.
We have investigated the possible physical interactions between CR, receptors for the Fc gamma R and surface Ig (sIg) on the surface membrane of murine B lymphocytes. We used the rat mAb to murine CR, 8C12, and 7G6, as CR ligands, and soluble Ag-antibody complexes as FcR ligands; and F(ab')2 fragments of rabbit antibodies specific for mouse IgM and IgD as sIg ligands. We have found that: 1) sIg, CR, and Fc gamma R are not directly linked, because capping of any one did not affect the expression of the others; 2) the mAb 8C12 and 7G6 failed by themselves to cross-link CR; 3) soluble Ag-antibody complexes crosslinked some, Fc gamma R on a minority of Fc gamma R+ lymphocytes; 4) once loaded with anti-CR mAb, CR co-capped with sIg when sIg was cross-linked; 5) once loaded with Ag-antibody complexes, Fc gamma R also co-capped with sIg when sIg was sIg was cross-linked; 6) loading of Fc gamma R did not affect the co-capping of surface CR with cross-linked sIg and conversely, loading of CR did not affect the co-capping of Fc gamma R with cross-linked sIg; only loaded CR or Fc gamma R co-capped with sIg regardless of the status of the other surface molecule; 7) neither loaded nor free CR co-capped with cross-linked Fc gamma R, and neither loaded nor free Fc gamma R co-capped with cross-linked CR. These results demonstrate that both Fc gamma R and CR independently become associated with sIg when either receptor is loaded and sIg is cross-linked.  相似文献   

12.
The spike H protein of bacteriophage phiX174 was prepared as a hexa histidine-tagged fusion (HisH). On enzyme-linked plate assaying, HisH was found to bind specifically to the lipopolysaccharides (LPSs) of phiX174-sensitive strains, Escherichia coli C and Salmonella typhimurium Ra chemotype, having the complete oligosaccharide sequence of the R-core on the LPSs. In sharp contrast, HisH bound weakly to the LPSs of phiX174-insensitive strains, i.e. E. coli F583 (Rd(2)) lacking some terminal saccharides and E. coli O111: B4 (smooth strain) having additional O-repeats on the R-core. The fluorescence spectra of HisH changed dose-dependently in the case of the LPS of E. coli C, the intensity increasing and the emission peak shifting to the shorter wavelength side, which was attributable to the hydrophobic interaction of HisH with the LPS. The binding equilibrium was analyzed by fluorometric titration to determine the dissociation constant K(d), 7.02 +/- 0.37 microM, and the Gibbs free energy change DeltaG(0), -29.1 kJ mol(-1) (at 22 degrees C, pH 7.4). Based on the temperature dependence of (K)d in a van't Hoff plot, the standard enthalpy change DeltaH(0) and the entropy change DeltaS(0) were calculated to be +23.7 kJ mol(-1) and 179 J mol(-1) K(-1) at 22 degrees C, respectively, and this binding was thereby concluded to be an entropy-driven reaction.  相似文献   

13.
Dengue viruses (DEN), causative agents of dengue fever (DF) and more severe dengue hemorrhagic fever (DHF)/dengue shock syndrome, infect over 100 million people every year. Among those infected, up to one-half million people develop DHF, which requires an extensive hospital stay. Recent reports indicate that there is a significant correlation between virus titer in the bloodstream of infected individuals and the severity of the disease, especially the development of DHF. This suggests that if there is a procedure to reduce viremia in infected subjects, then the severity of the disease may be controlled during the critical early stages of the disease before it progresses to DHF. We have generated bispecific mAb complexes (heteropolymer(s), HP), which contain a mAb specific for the DEN envelope glycoprotein cross-linked with a second mAb specific for the primate E complement receptor 1. These HP facilitate rapid binding of DEN to human and monkey E in vitro, with approximately 90% bound within 5 min. Furthermore, in a passive viremia monkey model established by continuous steady state infusion of DEN, injection of HP during the steady state promoted rapid binding of DEN to the E, followed by subsequent clearance from the vascular system. Moreover, HP previously infused into the circulation is capable of efficiently capturing a subsequent challenge dose of DEN and binding it to E. These data suggest that HP potentially can be useful for alleviating DEN infection-associated symptoms by reducing titers of free virus in the vascular system.  相似文献   

14.
The Escherichia coli dnaC protein is not absolutely required in vivo for bacteriophage phiX174 parental replicative-form synthesis (Kranias and Dumas, 1974). However, when rifampin is present at a concentration that inhibits DNA-dependent RNA polymerase, phiX174 parental replicative-form synthesis is dependent on the dnaC protein activity. We conclude that E. coli DNA-dependent RNA polymerase can substitute for the dnaC protein in phiX174 parental replicative-form DNA synthesis, presumably in its initiation. The implications of this result with respect to the in vitro synthesis of the complementary strand of phiX174 DNA are discussed.  相似文献   

15.
The spike G protein of bacteriophage phiX174 was prepared as a hexa histidine-tagged G protein (HisG). In the enzyme-linked plate assay, HisG bound specifically to lipopolysaccharides (LPSs) of the phiX174-sensitive strains, and did not bind to LPSs of the phiX174-insensitive strains. The truncated G protein obtained after trypsin digestion of HisG had the similar affinity to the LPSs to HisG, indicating that eight amino acid residues from the N-terminus are not essential to the binding with the LPSs.  相似文献   

16.
Phagocytosis of foreign pathogens by cells of the immune system is a vitally important function of innate immunity. The phagocytic response is initiated when ligands on the surface of invading microorganisms come in contact with receptors on the surface of phagocytic cells such as neutrophils, monocytes/macrophages, and dendritic cells. The complement receptor CR3 (CD11b/CD18, Mac-1) mediates the phagocytosis of complement protein (C3bi)-coated particles. Fcγ receptors (FcγRs) bind IgG-opsonized particles and provide a mechanism for immune clearance and phagocytosis of IgG-coated particles. We have observed that stimulation of FcγRs modulates CR3-mediated phagocytosis and that FcγRIIA and FcγRI exert opposite (stimulatory and inhibitory) effects. We have also determined that an intact FcγR immunoreceptor tyrosine-based activation motif is required for these effects, and we have investigated the involvement of downstream effectors. The ability to up-regulate or down-regulate CR3 signaling has important implications for therapeutics in disorders involving the host defense system.  相似文献   

17.
Affinity-purified rheumatoid factors (RF) from 20 patients with rheumatoid arthritis were tested for their reactivity with the mAb II-481 against glycoprotein E (gE), the Fc gamma-binding protein of HSV-1, as well as with a panel of mAb against human Fc gamma R. All RF bound to mAb II-481 in preference to mAb IV.3 (anti-human Fc gamma RII) or MOPC 141 (control mAb) which belong to the same IgG2b subclass. Five RF showed strong reactivity with II-481. No significant reactivity was observed between RF and mAb against human Fc gamma R. Non-RF human IgM did not react with any of the mAb. Clear-cut binding to II-481 was also seen with monoclonal IgM-RF derived from MRL/1 mice (mRF-2). The reaction between RF and II-481 was completely inhibited by human IgG. It was also inhibited by BHK cell extract infected with HSV-1, and with purified gE. II-481 inhibited the binding of human IgG Fc to the infected cell extract, confirming that II-481 recognizes the Fc-binding site on gE. II-481 did not react directly with human IgG or Fc of IgG. mAb to human IgG2 showed stronger binding to II-481 than to MOPC 141, suggesting II-481 has conformational similarity to human IgG H chain. These results suggest that at least some RF bear the "internal image" of HSV-1 Fc gamma-binding protein and support the hypothesis that some RF may be generated as anti-idiotype antibodies against antiviral antibodies.  相似文献   

18.
We studied the interaction of bispecific mouse mAb with human IgG Fc receptors, and assessed their ability to activate the monocytic cell line U937. Binding of monomeric hybrid anti-HuIgA1/HRP mAb to the high-affinity IgG receptor, Fc gamma RI, on U937 cells was only observed when mAb with one or more mIgG2a H chains (hybrid mIgG1-2a, mIgG2a-2b, and mIgG2a-2a) were used. These Fc gamma RI-bound hybrid mAb were capable of enhancing the internal free cytosolic Ca2+ concentration ([Ca2+]i) in U937 cells only when bound mIgG were cross-linked using F(ab')2 fragments of goat anti-mIg antibody. A hybrid mIgG1-2a mAb were cross-linked using goat anti-mIgG1 antibody, showing that the hybrid mAb themselves mediate the induction of Ca2+ increase. Remarkably, anti-Fc gamma RII mAb IV.3 was able to inhibit the Ca2+ increase induced via mIgG2a-1 or mIgG1-2a hybrid mAb completely, despite the fact that we could not detect any effect of IV.3 on binding of monomeric hybrid mIgG1-2a or mIgG2a-1 mAb to U937. The hybrid mAb were also able to induce lysis of HuIgA1-coated E using U937 effector cells. This lysis was completely inhibited by preincubation of U937 cells with mIgG2a mAb TB-3, which blocks Fc gamma RI via its Fc-part ("Kurlander phenomenon"). In contrast, Fc gamma RII-blocking mAb IV.3 and CIKM5 caused a significant enhancement of the antibody-dependent cellular cytotoxicity (ADCC) activity mediated by hybrid mIgG1-2a and mIgG2a-2b mAb. This enhancement did not occur when the parental anti-HuIgA1/2a or the hybrid anti-HuIgA1/HRP/2a-2a mAb were evaluated for ADCC activity. These findings suggest that hybrid mAb not only can bind to Fc gamma RI, but can mediate functional activation of myeloid cells. Given the effect of mAb IV.3 on [Ca2+]i changes and ADCC triggered through IgG1-2a mAb, we suggest that Fc gamma RII may have a role in the regulation of Fc gamma RI-triggered functions or signaling.  相似文献   

19.
20.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号