首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In radioligand binding studies, BIMG 80, a new putative antipsychotic, displayed good affinity at certain serotonin (5-HT1A, 5-HT2A, 5-HT6), dopamine (D1, D2L, D4), and noradrenergic (α1) receptors. The effect of acute subcutaneous BIMG 80, clozapine, haloperidol, risperidone, amperozide, olanzapine, and Seroquel was then investigated on dopamine release in medial prefrontal cortex, nucleus accumbens, and striatum in freely moving rats using the microdialysis technique. Four different neurochemical profiles resulted from the studies: (a) Systemic administration of BIMG 80, clozapine, and amperozide produced greater percent increases in dopamine efflux in medial prefrontal cortex than in the striatum or the nucleus accumbens. (b) Haloperidol induced a similar increase in dopamine concentrations in the striatum and nucleus accumbens with no effect in the medial prefrontal cortex. (c) Risperidone and olanzapine stimulated dopamine release to a similar extent in all brain regions investigated. (d) Seroquel failed to change significantly dopamine output both in the medial prefrontal cortex and in the striatum. Because an increase in dopamine release in the medial prefrontal cortex may be predictive of effectiveness in treating negative symptoms and in the striatum may be predictive of induction of extrapyramidal side effects, BIMG 80 appears to be a potential antipsychotic compound active on negative symptoms of schizophrenia with a low incidence of extrapyramidal side effects.  相似文献   

2.
In contrast to typical neuroleptic drugs, which have high affinities for dopamine D2 receptors, clozapine binds to multiple neurotransmitter receptors. The mechanisms responsible for its superior clinical efficacy over typical neuroleptics remain unknown. Using an automated genomics approach, total gene expression analysis (TOGA), we found an approximately threefold increase in the accumulation of the mRNA encoding apolipoprotein D (apoD) in mouse striatum in response to chronic treatment with clozapine. While in control animals, apoD is expressed predominantly in astrocytes, in situ hybridization and immunohistochemical studies indicated a substantial increase in apoD expression in neurons of the striatum, globus pallidus and thalamus after 2 weeks of clozapine treatment. Clozapine-induced increases in apoD expression were also observed in some white matter regions. These results suggest that apoD is a mediator in the mechanisms of clozapine and thus that deficiencies in aspects of lipid metabolism may be responsible for psychoses.  相似文献   

3.
Calcineurin (CN) was recently identified as a susceptibility gene for schizophrenia as well as showing altered RNA expression levels in the post-mortem brains of individuals with schizophrenia. CN knockout mice show a number of behaviours associated with schizophrenia, including deficits in sensorimotor gating, suggesting a link between CN and psychosis. Concurrently, we found, using genome screening techniques, that antipsychotics alter CN expression levels. Therefore, western blotting, in situ hybridization, immunocytochemistry and phosphatase assays were employed to determine what effect antipsychotics have on CN. The results indicate that clozapine, risperidone and haloperidol cause substantial reductions in the A subunit of CN but not CN B at both the RNA and protein levels in the striatum and prefrontal cortex. The changes could only be observed after repeated treatment with antipsychotics but not after acute administration. The alterations in CN protein levels were specific to antipsychotics and mediated by D2 dopamine receptor antagonism. However, despite reductions in CN protein levels, the phosphatase activity of CN was significantly elevated after treatment with antipsychotics. Collectively the results suggest that CN may be a common target for antipsychotics and that antipsychotic-induced alterations in CN may represent one of the mechanisms by which antipsychotics alleviate psychosis.  相似文献   

4.
The formation of hydroxyl radicals following the systemic administration of 3,4-methylenedioxymethamphetamine (MDMA) was studied in the striatum of the rat by quantifying the stable adducts of salicylic acid and D-phenylalanine, namely, 2,3-dihydroxybenzoic acid (2,3-DHBA) and p-tyrosine, respectively. The repeated administration of MDMA produced a sustained increase in the extracellular concentration of 2,3-DHBA and p-tyrosine, as well as dopamine. The MDMA-induced increase in the extracellular concentration of both dopamine and 2,3-DHBA was suppressed in rats treated with mazindol, a dopamine uptake inhibitor. Mazindol also attenuated the long-term depletion of serotonin (5-HT) in the striatum produced by MDMA without altering the acute hyperthermic response to MDMA. These results are supportive of the view that MDMA produces a dopamine-dependent increase in the formation of hydroxyl radicals in the striatum that may contribute to the mechanism whereby MDMA produces a long-term depletion of brain 5-HT content.  相似文献   

5.
1. The goal of this work was to determine the effects of typical and atypical neuroleptics on the level of preprosomatostatin messenger RNA (mRNA) in regions of the rat brain innervated by dopaminergic neurons. 2. Quantitative in situ hybridization histochemistry was used to measure the levels of mRNA encoding preprosomatostatin in neurons of the striatum, the nucleus accumbens, and the medial and lateral agranular areas of the frontal cortex in adult rats treated with either haloperidol or clozapine. 3. In untreated animals, the density of neurons containing preprosomatostatin mRNA was higher in the nucleus accumbens than in the striatum and frontal cortex. The intensity of labeling per neuron, however, was higher in the striatum than in the two other areas examined, suggesting that the expression of preprosomatostatin mRNA is differentially regulated in these brain regions. Chronic administration of haloperidol (1 mg/kg for 28 days) induced a significant decrease in the labeling for preprosomatostatin mRNA in neurons of the nucleus accumbens, frontal cortex, and medial but not lateral striatum. Treatment with clozapine (20 mg/kg for 28 days) increased the levels of preprosomatostatin mRNA in the nucleus accumbens but not in the striatum or the frontal cortex. 4. These results support a role for dopamine in the regulation of central somatostatinergic neurons. The differences in the effects of haloperidol, a neuroleptic which induces extrapyramidal side effects, and clozapine, which does not, suggest that somatostatinergic neurons may play an important role in the regulation of motor behavior.  相似文献   

6.
Kappa-opioid receptor agonists prevent alterations in dopamine neurotransmission that occur in response to repeated cocaine administration. The present microdialysis study examined whether administration of the selective kappa-opioid receptor agonist U69593 with methamphetamine prevents alterations in dopamine levels produced by neurotoxic doses of methamphetamine. Swiss Webster mice were injected intraperitoneally with methamphetamine (10.0 mg/kg) or saline, four times in 1 day, at 2-h intervals. Prior to the first and third injection, they received U69593 (0.32 mg/kg s.c.) or vehicle. Microdialysis was conducted 3, 7, or 21 days later. Basal and K+-evoked (60 and 100 mM) dopamine overflow were reduced 3 days after methamphetamine administration. These effects were long-lasting in that they were still apparent 7 and 21 days after methamphetamine treatment. Intrastriatal (5.0 and 50 microM) or systemic (1.0-10.0 mg/kg) administration of methamphetamine increased dopamine concentrations in control animals. In mice preexposed to methamphetamine, methamphetamine-evoked dopamine overflow was reduced. In animals that had received methamphetamine with U69593, basal dopamine levels did not differ from those of vehicle-treated controls. U69593 treatment attenuated the decrease in K+-evoked dopamine produced by prior methamphetamine exposure. The reduction in methamphetamine-evoked dopamine levels was also attenuated. The administration of U69593 alone did not modify basal or stimulus-evoked dopamine levels. These data demonstrate that repeated methamphetamine administration reduces presynaptic dopamine neuronal function in mouse striatum and that co-administration of a selective kappa-opioid receptor agonist with methamphetamine attenuates these effects. U69593 treatment did not modify the hyperthermic effects of methamphetamine, indicating that this kappa-opioid receptor agonist selectively attenuates methamphetamine-induced alterations in dopamine neurotransmission.  相似文献   

7.
In vivo microdialysis has been used to study the acute effects of antipsychotic drugs on the extracellular level of dopamine from the nucleus accumbens, striatum, and prefrontal cortex of the rat. (-)-Sulpiride (20, 50, and 100 mg/kg i.v.) and haloperidol (0.1 and 0.5 mg/kg i.v.) enhanced the outflow of dopamine in the striatum and nucleus accumbens. In the medial prefrontal cortex, (-)-sulpiride at all doses tested did not significantly affect the extracellular level of dopamine. The effect of haloperidol was also attenuated in the medial prefrontal cortex; 0.1 mg/kg did not increase the outflow of dopamine and the effect of 0.5 mg/kg haloperidol was of shorter duration in the prefrontal cortex than that observed in striatum and nucleus accumbens. The atypical antipsychotic drug clozapine (5 and 10 mg/kg) increased the extracellular concentration of dopamine in all three regions. In contrast to the effects of sulpiride and haloperidol, that of clozapine in the medial prefrontal cortex was profound. These data suggest that different classes of antipsychotic drugs may have distinct effects on the release of dopamine from the nigrostriatal, mesolimbic, and mesocortical terminals.  相似文献   

8.
Persistent neurochemical changes consistent with parkinsonism have been reported in brains of mice treated with repeated high doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We now report that ethanol or acetaldehyde potentiate MPTP-induced damage to mouse striatum. One hour after the combined treatments (ethanol and MPTP or acetaldehyde and MPTP), the animals exhibited a marked and long-lasting catatonic posture and then returned gradually to apparently normal locomotion. Seven days after MPTP administration, depletion of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in mouse striatum were further potentiated in the group of animals treated with ethanol. This effect was more evident when the treatment was repeated twice and was dose-dependent. Acetaldehyde was more potent than ethanol in enhancing MPTP neurotoxicity. A single exposure to acetaldehyde before and during MPTP treatment produced a very consistent fall of DA, DOPAC and HVA but not serotonin (5HT) or 5-hydroxyindoleacetic acid (5HIAA) in the striatum. This suggests that ethanol effects on MPTP neurotoxicity might be related to acetaldehyde formation.  相似文献   

9.
Abstract: High doses of methamphetamine (METH) produce a long-term depletion in striatal tissue dopamine content. The mechanism mediating this toxicity has been associated with increased concentrations of dopamine and glutamate and altered energy metabolism. In vivo microdialysis was used to assess and alter the metabolic environment of the brain during high doses of METH. METH significantly increased extracellular concentrations of lactate in striatum and prefrontal cortex. This increase was significantly greater in striatum and coincided with the greater vulnerability of this brain region to the toxic effects of METH. To examine the effect of supplementing energy metabolism on METH-induced dopamine content depletions, the striatum was perfused directly with decylubiquinone or nicotinamide to enhance the energetic capacity of the tissue during or after a neurotoxic dosing regimen of METH. When decylubiquinone or nicotinamide was perfused into striatum during the administration of METH, there was no significant effect on METH-induced striatal dopamine efflux, glutamate efflux, or the long-term dopamine depletions measured 7 days later. However, a delayed perfusion with decylubiquinone or nicotinamide for 6 h beginning immediately after the last METH injection attenuated the METH-induced striatal dopamine depletions measured 1 week later. These results support the hypothesis that the compromised metabolic state produced by METH administration predisposes dopamine terminals to the neurotoxic effects of glutamate, dopamine, and/or free radicals.  相似文献   

10.
Chlorpromazine, haloperidol and clozapine are approximately equipotent in antagonizing dopamine sensitive adenylate cyclase activity in homogenates of rat brain striatum, in contrast to the differences in clinical antipsychotic potencies reported by others. The antagonism appeared to occur at a structurally specific dopamine site, as inhibition by a series of chlorpromazine analogues of similar hydrophobicity exhibited a structural specificity similar to that found for their neuroleptic and cataleptic activities. Sulpiride, a dopamine antagonist with antipsychotic activity, and metoclopramide, a structurally related central dopamine antagonist, failed to inhibit the dopamine sensitive adenylate cyclase. Pre-treatment of rats with haloperidol (3 mg/kg per day) for 6 or 28 days did not induce a supersensitive response of the adenylate cyclase to stimulation by dopamine or apomorphine or inhibition by clozapine. It was concluded that the dopamine sensitive adenylate cyclase may not be the site of action of all anti-psychotic agents.  相似文献   

11.
Balla  Andrea  Hashim  Audrey  Burch  Sarah  Javitt  Daniel C.  Lajtha  Abel  Sershen  Henry 《Neurochemical research》2001,26(8-9):1001-1006
Phencyclidine (PCP) administration in rodents has been used to model aspects of schizophrenia. One aspect of such treatment has been the enhancement of amphetamine-induced increase of dopamine in the prefrontal cortex and striatum. To further characterize this mechanism rats were treated for 2 weeks with continuous PCP (15 mg/kg per day via Alzet minipump). Rats were implanted with a microdialysis probe into the prefrontal cortex (PFC) or striatum. Amphetamine was administered locally via the dialysis probe during one collection period and changes in extracellular dopamine were monitored. The effect of local administration of the dopamine uptake blocker nomifensine was also measured. Amphetamine (10 M) and nomifensine (10 M) increased the level of dopamine in both the PFC and striatum. PCP administration did not alter the response to amphetamine or nomifensine in the PFC, but reduced this response about 2-fold in striatum. To examine effects of continuous PCP administration on dopamine autoreceptor function, release of [3H]dopamine in response to electrical stimulation and in the presence of a dopamine agonist or antagonist was tested in striatal and prefrontal cortical tissue. Autoreceptor responses were similar in control and PCP-treated tissues. We conclude that the brain region-specific enhancement of dopamine release by peripheral amphetamine administration in rats after PCP is not likely mediated by alterations in the dopamine autoreceptors or changes in the dopamine transporter. The selective local responses of amphetamine indicates heterogeneous regional effects of continuous PCP on NMDA receptor function; effects that influence both regional excitatory responses and the overall dynamics of tonic excitatory/inhibitory inputs to the PFC and striatum.  相似文献   

12.
Abstract— Drugs possessing (chlorpromazine, haloperidol, clozapine, thioridazine and sulpiride) or lacking (benzoctamine and perlapine) antipsychotic activity were compared with respect to their ability to enhance x-methyl-p-tyrosine-induced dopamine disappearance from the mesolimbic area and corpus striutum of rat brain. In addition, their effects on the endogenous concentrations of homovanillic (HVA) and 3.4-dihydroxyphenylacetic (DOPAC) acids in these two brain areas were determined. Some of the drugs enhanced dopamine disappearance in the mesolimbic area more than in the striatum. The most active in this respect were sulpiride. perlapine and chlorpromazine. By contrast, haloperidol was slightly more active in the striatum than in the mesolimbic area. None of the drugs was more efficient in elevating HVA levels in the mesolimbic area than in the striatum. However, there were large differences in the relative extent of the HVA increases in the two regions. Benzoctamine, perlapine and chlorpromazine increased HVA concentrations in the mesolimbic area nearly as much as in the striatum. Thioridazine and haloperidol, however, elevated striatal HVA much more effectively. Haloperidol and clozapine increased the DOPAC concentration in both areas to about the same extent. The other drugs were more active in the striatum. The largest difference between both regions was shown by chlorpromazine. Perlapine and benzoctamine, both lacking antipsychotic activity, produced much larger increases of HVA than of DOPAC. This is in contrast to the results obtained with true neuroleptics and may reflect an involvement of release phenomena in the action of these two drugs on dopamine metabolism. These results suggest that a preferential increase of dopamine turnover in the mesolimbic area is not necessarily linked to a better ratio of antipsychotic activity vs. extrapyramidal side effects. Moreover, an antiacetylcholine component of dopamine receptor blocking drugs does not seem to be a prerequisite for preferential activity on dopamine turnover in the mesolimbic system.  相似文献   

13.
Abstract: To study the possibility that increasing striatal activity of aromatic l -amino acid decarboxylase (AADC; EC 4.1.1.28) can increase dopamine production in dopamine denervated striatum in response to l -3,4-dihydroxyphenylalanine ( l -DOPA) administration, we grafted Cos cells stably expressing the human AADC gene (Cos- haadc cells) into 6-hydroxydopamine denervated rat striatum. Before grafting, the catalytic activity of the enzyme was assessed in vitro via the generation of 14CO2 from l -[14C]DOPA. The K m value for l -DOPA in intact and disrupted cells was 0.60 and 0.56 m M , respectively. The cofactor, pyridoxal 5-phosphate, enhanced enzymatic activity with maximal effect at 0.1 m M . The pH optimum for enzyme activity was 6.8. Grafting Cos- haadc cells into denervated rat striatum enhanced striatal dopamine levels measured after systemic administration of l -DOPA. When measured 2 h after l -DOPA administration, the mean dopamine level in the striata of Cos- haadc -grafted animals was 2 µg/g of tissue, representing 31% of normal striatal dopamine concentration. The mean dopamine concentration in the striata grafted with untransfected Cos cells (Cos-ut cells) was 1 µg/g. At 6–8 h after l -DOPA administration, striatal dopamine content in the Cos- haadc -grafted animals was 0.67 µg/g of tissue weight, representing 9% of intact striatum dopamine content. By contrast, the average dopamine content in the Cos-ut-grafted animals was undetectable. These findings demonstrate that enhancing striatal AADC activity can improve dopamine bioformation in response to systemically administered l -DOPA.  相似文献   

14.
Protein kinase B and glycogen synthase kinase-3 have been identified as susceptibility genes for schizophrenia and altered protein and mRNA levels have been detected in the brains of schizophrenics post-mortem. Recently, we reported that haloperidol, clozapine and risperidone alter glycogen synthase kinase-3 and beta-catenin protein expression and glycogen synthase kinase-3 phosphorylation levels in the rat prefrontal cortex and striatum. In the current study, beta-catenin, adenomatous polyposis coli, Wnt1, dishevelled and glycogen synthase kinase-3 were examined in the ventral midbrain and hippocampus using western blotting. In addition, beta-catenin and GSK-3 were examined in the substantia nigra and ventral tegmental area using confocal and fluorescence microscopy. The results indicate that repeated antipsychotic administration results in significant elevations in glycogen synthase kinase-3, beta-catenin and dishevelled-3 protein levels in the ventral midbrain and hippocampus. Raclopride causes similar changes in beta-catenin and GSK-3 in the ventral midbrain, suggesting that D2 dopamine receptor antagonism mediated the changes observed following antipsychotic administration. In contrast, amphetamine, a drug capable of inducing psychotic episodes, had the opposite effect on beta-catenin and GSK-3 in the ventral midbrain. Collectively, the results suggest that antipsychotics may exert their beneficial effects through modifications to proteins that are associated with the canonical Wnt pathway.  相似文献   

15.
16.
Active uptake of 3,4-dihydroxyphenylethylamine (dopamine) is sodium- and temperature-dependent, strongly inhibited by benztropine and nomifensine, and present in corpus striatum and nucleus accumbens. In rat striatum dopamine uptake is related to a receptor that is specifically labelled by [3H]cocaine in the presence of Na+ and is located on dopaminergic terminals. The dopamine uptake is differentially affected in the two areas by single or repeated injections of cocaine. Cocaine inhibits dopamine uptake in slices of corpus striatum. Moreover Na+-dependent [3H]cocaine binding is not detectable in nucleus accumbens. Nomifensine inhibits [3H]dopamine uptake by interacting with low- and high-affinity sites in corpus striatum, but shows only low affinity for dopamine uptake in nucleus accumbens. The present data indicate that different mechanisms are involved in the regulation of dopamine uptake in corpus striatum and nucleus accumbens.  相似文献   

17.
18.
The pesticide paraquat (PQ) was found to be a suitable xenobiotic to model Parkinson’s disease. The reactive oxygen species (ROS) production was suggested to be the main cause of PQ toxicity but very few evidences were found for its generation in the brain in vivo after ip administration. We compared the effects of PQ-induced ROS generation between the brain structures and the peripheral tissues using two different hydroxyl radical generation markers. Repeated but not single ip PQ administration increased the levels of ROS in the striatal homogenates but, when measured in the extracellular microdialysis filtrate, no change was observed. The increased dopamine release was detected in the striatum after the fourth PQ administration and its basal levels were decreased. A single treatment with the pesticide did not influence ROS production in the lungs or kidneys but repeated intoxication decreased its levels. These results suggest that repeated, systemic administration of a low dose of PQ triggers intracellular ROS formation in the brain and can cause slowly progressing degenerative processes, without the toxic effects in the peripheral tissues.  相似文献   

19.
The debate about the toxicity of L-DOPA to dopaminergic neurons has not been resolved. Even though enzymatic and nonenzymatic metabolism of L-DOPA can produce hydrogen peroxide and oxygen free radicals, there has been controversy as to whether L-DOPA generates an oxidant stress in vivo. This study determined whether acute or repeated administration of L-DOPA caused in vivo production of hydroxyl radicals in striatum and other brain regions in rats with a unilateral 6-hydroxydopamine lesion of the dopaminergic nigrostriatal projections. Salicylate trapping combined with in vivo microdialysis provided measurements of extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA) in striatum following L-DOPA administration systemically (100 mg/kg, i.p.) or by intrastriatal perfusion (1 mM, via the microdialysis probe). Tissue concentrations of 2,3-DHBA and salicylate were also measured in striatum, ventral midbrain, and cerebellum following repeated administration of L-DOPA (50 mg/kg, i.p., once daily for 16 days). In each instance, treatment with L-DOPA did not increase 2,3-DHBA concentrations, regardless of the nigrostriatal dopamine system's integrity. When added to the microdialysis perfusion medium, L-DOPA resulted in a significant decrease in the striatal extracellular concentration of 2,3-DHBA. These results suggest that administration of L-DOPA, even at high doses, does not induce hydroxyl radical formation in vivo and under some conditions may actually diminish hydroxyl radical activity. Furthermore, prior damage to the nigrostriatal dopamine system does not appear to predispose surviving dopaminergic neurons to increased hydroxyl radical formation following L-DOPA administration. Unlike L-DOPA, systemic administration of methamphetamine (10 mg/kg, s.c.) produced a significant increase in the concentration of 2,3-DHBA in striatal dialysate, suggesting that increased formation of hydroxyl radicals may contribute to methamphetamine neurotoxicity.  相似文献   

20.
Protein kinase G (PKG) activation has been implicated in the regulation of synaptic plasticity in the brain. This study was conducted to determine the involvement of PKG-associated dopamine D2 (D2) receptors in the regulation of dopamine release, ΔFosB expression and locomotor activity in response to repeated cocaine exposure. Repeated systemic injections of cocaine (20 mg/kg), once a day for seven consecutive days, increased cyclic guanosine monophosphate (cGMP) and extracellular dopamine concentrations in the dorsal striatum. Inhibition of neuronal nitric oxide synthase (nNOS), cGMP or PKG and stimulation of D2 receptors decreased the repeated cocaine-induced increase in dopamine concentrations. Similar results were obtained by the combining nNOS, cGMP or PKG inhibition with stimulation of D2 receptors. Parallel to these data, PKG inhibition, D2 receptor stimulation, and combining PKG inhibition with stimulation of D2 receptors decreased the repeated cocaine-induced increases in ΔFosB expression and locomotor activity. These findings suggest that control of D2 receptors by PKG activation after repeated cocaine is responsible for upregulating dopamine release and sustained long-term changes in gene expression in the dopamine terminals and gamma-aminobutyric acid neurons of the dorsal striatum, respectively. This upregulation may contribute to behavioral changes in response to repeated exposure to cocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号