首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Proximal upstream flanking sequences of the mouse myosin alkali light chain gene encoding MLC1F and MLC3F, the mouse alpha-cardiac actin gene and the chicken gene for the alpha-subunit of the acetylcholine receptor were linked to the bacterial chloramphenicol acetyl transferase (CAT) gene and transfected into primary cultures derived from mouse skeletal muscle or into myogenic cell lines. We demonstrate that the mouse MLC1F/MLC3F gene has two functional promoters. In primary muscle cultures, a 1200 bp sequence flanking exon 1 (MLC1F) and a 438 bp sequence flanking exon 2 (MLC3F) direct CAT activity in myotubes, but not in myoblasts or in non myogenic 3T6 and CV1 cells. Developmentally regulated expression is also seen with the alpha-cardiac actin (320 bp) and acetylcholine receptor alpha-subunit (850 bp) upstream sequences in the primary culture system. Transfection experiments with myogenic cell lines show different results with a given promoter construct, reflecting possible differences in the levels of regulatory factors between lines. Different muscle gene promoters behave differently in a given cell line, suggesting different regulatory factor requirements between these promoters.  相似文献   

2.
The 5' end and promoter region of the alpha-subunit gene of chicken muscle acetylcholine receptor was mapped and sequenced. It includes a TATA and a CAAT box and a potential Sp1-binding site. When inserted in front of the chloramphenicol acetyltransferase gene, this promoter (including 850 base pairs of upstream sequence) directed high transient chloramphenicol acetyltransferase expression in transfected mouse C2.7 myotubes but not in C2.7 myoblasts or nonmyogenic 3T6 cells.  相似文献   

3.
4.
Y Wang  H P Xu  X M Wang  M Ballivet  J Schmidt 《Neuron》1988,1(6):527-534
The regulation of acetylcholine receptor alpha-subunit gene expression was analyzed by transient expression assays. Using rabbit beta-globin cDNA as a reporter gene, we have confirmed that the 5'-flanking sequence of the chicken acetylcholine receptor alpha-subunit gene directs specific expression in differentiated C2C12 cells, a mouse muscle cell line, but not in undifferentiated C2C12 cells and mouse 3T3 fibroblasts. Testing chimeric plasmids containing Bal31 deletion mutants of the alpha-subunit gene upstream sequence, we found the -116 to -81 region of the alpha-subunit to be responsible for tissue- and stage-specific expression. This 36 bp fragment stimulates the activity of both alpha-subunit and SV40 promoters in a distance- and orientation-independent manner, thus fulfilling the criteria of an enhancer.  相似文献   

5.
The muscle-specific promoter of the dystrophin gene is active in skeletal, cardiac, and smooth muscles and is specifically stimulated during differentiation of myoblasts into multinucleated myotubes. An 850-base pair (bp) DNA fragment upstream from the cap site is able to confer a partial muscle specificity to a reporter gene. The region between -850 and -140 bp includes nonspecific negative and positive regulatory sequences. A continuous stretch of 140 bp upstream from the cap site exhibits a striking conservation between rodents and human (93% homology) and still retains muscle preference of expression. It contains two putative binding sites for factors involved in regulation of other muscle-specific genes, a CCArGG box and an E box. This latter element, however, is unable to confer the ability to be transactivated by MyoD1 to the dystrophin promoter. The -140-bp promoter fragment exhibits antagonist effects contributed by one inhibiting sequence (nucleotide -140/-96), active in all cell types, and one activating region, from nucleotide -96 to the cap site, sufficient to confer a muscle preference of expression, in which the CCArGG box seems to play a major role.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Myogenin and CMD1, the chicken homologue of MyoD, transactivate the promoter of the alpha-subunit of the acetylcholine receptor (AChR) in chicken fibroblasts. The expression of these three genes was followed by in situ hybridization. In two-day-old embryos the CMD1 gene is expressed shortly before the AChR alpha-subunit and the myogenin genes. At day 19 extrajunctional AChR mRNA clusters have disappeared and myogenin mRNAs are no longer detected in PLD muscle. Moreover, both myogenin and CMD1 mRNA levels increase after muscle denervation in chicks. These data are compatible with a role for myogenic factors in the induction and maintenance of extra-junctional expression of the AChR genes during early muscle development. Using digoxygenin labelled RNA probes, we also show that the mRNAs for the AChR alpha-subunit display a punctated, probably perinuclear distribution, whereas mRNAs for myogenic genes accumulate in the sarcoplasm around subsets of nuclei in the muscle fiber.  相似文献   

16.
17.
18.
The alpha B-crystallin gene is expressed at high levels in lens and at lower levels in some other tissues, notably skeletal and cardiac muscle, kidney, lung, and brain. A promoter fragment of the murine alpha B-crystallin gene extending from positions -661 to +44 and linked to the bacterial chloramphenicol acetyltransferase (CAT) gene showed preferential expression in lens and skeletal muscle in transgenic mice. Transfection experiments revealed that a region between positions -426 and -257 is absolutely required for expression in C2C12 and G8 myotubes, while sequences downstream from position -115 appear to be determinants for lens expression. In association with a heterologous promoter, a -427 to -259 fragment functions as a strong enhancer in C2C12 myotubes and less efficiently in myoblasts and lens. Gel shift and methylation interference studies demonstrated that nuclear proteins from C2C12 myoblasts and myotubes specifically bind to the enhancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号