首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The hypothesis that the life-extending effect of caloric restriction (CR) is associated with an attenuation of the age-related pro-oxidant shift in the thiol redox state was tested employing a novel experimental design. Amounts of GSH, GSSG, and protein mixed disulfides (Pr-SSG) in the skeletal muscle and liver were compared between two strains of mice that have similar life spans when fed ad libitum (AL), but different life spans under the standard CR regimen. The life span of one strain, C57BL/6, is extended under CR, whereas it remains unaffected in the other strain, DBA/2. Mice were fed AL or 40% less food starting at 4 months and compared at 6 and 24 months of age. The amounts of GSSG and Pr-SSG increased and the GSH:GSSG ratios decreased with age in both strains of AL-fed mice. CR prevented these age-related changes in the C57BL/6, whose life span is extended by CR, but not in the DBA/2 mice, in which it remains unaffected. CR enhanced the activity of glutamate-cysteine ligase in the C57BL/6, but not in the DBA/2 mice. The results suggest that longevity extension by CR may be associated with the attenuation of age-related pro-oxidizing shifts in the thiol redox state.  相似文献   

3.
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.  相似文献   

4.
汪大婷  曾庆平 《微生物学通报》2014,41(10):2012-2021
【目的】已知H2O2介导的线粒体低毒兴奋效应(Mitohormesis)能模拟热量限制延长酵母寿命,但未知两者是否存在共同作用机理。【方法】利用依时菌落计数法测定酿酒酵母时序寿命(CLS),采用微阵列芯片分析ATP结合盒(ABC)转运体基因表达谱及脂质代谢模式的转变,通过酶学测定法比较超氧化物歧化酶(SOD)活性的动态变化。【结果】经热量限制、H2O2、青蒿琥酯处理后,酵母CLS有不同程度延长,细胞解毒相关ABC转运体基因表达均下调或不变,促进长链脂肪酸运输的过氧化物酶体膜ABC转运体基因以及加速固醇摄取的质膜ABC转运体基因表达则显著上调。相应地,脂质分解(如脂肪酸β-氧化)基因表达上调,脂质合成(如脂肪酸延伸及去饱和)基因表达则下调。不同处理组中催化线粒体H2O2生成的Mn-SOD活性提高,导致催化H2O2降解及转变的抗氧化酶基因表达上调。【结论】低毒兴奋效应及热量限制在酵母中发挥延寿作用,既有赖于抗氧化酶催化的活性氧(ROS)清除反应,也取决于ABC转运体介导的脂质转运及后续的脂质分解及再利用。  相似文献   

5.
Decreased immune function associated with aging has been demonstrated in both humans and animals. We hypothesize that reactive oxygen species (ROS)-mediated damage to biological macromolecules may contribute to compromised immune response during aging. In this study, we compared the levels of lipid peroxidation and oxidatively modified proteins in plasma and splenocytes, and the mitogen-induced T lymphocyte proliferation in ad lib-fed (AL) and caloric restricted (CR) Fischer 344 × BNF1 male rats at the ages of 5, 18, and 31 months. The results show that AL rats exhibit an age-related decrease in proliferative response of splenic lymphocytes to phytohemagglutinin (PHA) and concanavalin A (Con A). This functional decline in T-lymphocytes during aging is inversely correlated to the levels of both lipid peroxidation and protein carbonyl in the plasma and splenic lymphocytes. Caloric restriction, however, can partially reverse the age-dependent decrease in T lymphocyte proliferation and significantly reduce lipid peroxidation and protein carbonyl contents in plasma and splenocytes. The above observations support the hypothesis that the age-associated declines in immune function are related to the oxidative modification of biological macromolecules, which in turn may lead to enzyme inactivation, membrane disruption, and cell senescence. One of the mechanisms by which caloric restriction reverses declined immune function in aged rats is hypothesized to be through reduction in ROS production and thereby protection of cellular macromolecules against oxidative damage.  相似文献   

6.
Studies in Drosophila and Caenorhabditis elegans have shown increased longevity with the increased free radical scavenging that accompanies overexpression of oxidant-scavenging enzymes. This study used yeast, another model for aging research, to probe the effects of overexpressing the major activity protecting against superoxide generated by the mitochondrial respiratory chain. Manganese superoxide dismutase (MnSOD) overexpression increased chronological life span (optimized survival of stationary (G0) yeast over time), showing this is a survival ultimately limited by oxidative stress. In contrast, the same overexpression dramatically reduced the replicative life span of dividing cells (the number of daughter buds produced by each newly born mother cell). This reduction in the generational life span by MnSOD overexpression was greater than that generated by loss of the major redox-responsive regulator of the yeast replicative life span, NAD+-dependent Sir2p histone deacetylase. It was also independent of the latter activity. Expression of a mitochondrially targeted green fluorescent protein in the MnSOD overexpressor revealed that the old mother cells of this overexpressor, which had divided for a few generations, were defective in segregation of the mitochondrion from the mother to daughter. Mitochondrial defects are, therefore, the probable reason that MnSOD overexpression shortens replicative life span.  相似文献   

7.
While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non‐Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL‐fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL‐fed female offspring but not male offspring and increasing the fecundity of AL‐fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span.  相似文献   

8.
Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process.  相似文献   

9.
The redox dye methylene blue (MB) is proven to have beneficial effects in various models of neurodegenerative diseases. Here we investigated the effects of MB (100 nM, 300 nM, and 1 μM) on key bioenergetic parameters and on H2O2 production/elimination in isolated guinea pig brain mitochondria under normal as well as respiration-impaired conditions. As measured by high-resolution Oxygraph the rate of resting oxygen consumption was increased, but the ADP-stimulated respiration was unaffected by MB with any of the substrates (glutamate malate, succinate, or α-glycerophosphate) used for supporting mitochondrial respiration. In mitochondria treated with inhibitors of complex I or complex III MB moderately but significantly increased the rate of ATP production, restored ΔΨm, and increased the rate of Ca2+ uptake. The effects of MB are consistent with transferring electrons from upstream components of the electron transport chain to cytochrome c, which is energetically favorable when the flow of electrons in the respiratory chain is compromised. On the other hand, MB significantly increased the production of H2O2 measured by Amplex UltraRed fluorimetry under all conditions, in resting, ATP-synthesizing, and respiration-impaired mitochondria, with each substrate combination supporting respiration. Furthermore, it also decreased the elimination of H2O2. Generation of H2O2 without superoxide formation, observed in the presence of MB, is interpreted as a result of reduction of molecular oxygen to H2O2 by the reduced MB. The elevated generation and impaired elimination of H2O2 should be considered for the overall oxidative state of mitochondria treated with MB.  相似文献   

10.
One of the most important antioxidant enzymes is superoxide dismutase (SOD), which catalyses the dismutation of superoxide radicals to hydrogen peroxide. The enzyme plays an important role in diseases like trisomy 21 and also in theories of the mechanisms of aging. But instead of being beneficial, intensified oxidative stress is associated with the increased expression of SOD and also studies on bacteria and transgenic animals show that high levels of SOD actually lead to increased lipid peroxidation and hypersensitivity to oxidative stress. Using mathematical models we investigate the question how overexpression of SOD can lead to increased oxidative stress, although it is an antioxidant enzyme. We consider the following possibilities that have been proposed in the literature: (i) Reaction of H(2)O(2) with CuZnSOD leading to hydroxyl radical formation. (ii) Superoxide radicals might reduce membrane damage by acting as radical chain breaker. (iii) While detoxifying superoxide radicals SOD cycles between a reduced and oxidized state. At low superoxide levels the intermediates might interact with other redox partners and increase the superoxide reductase (SOR) activity of SOD. This short-circuiting of the SOD cycle could lead to an increased hydrogen peroxide production. We find that only one of the proposed mechanisms is under certain circumstances able to explain the increased oxidative stress caused by SOD. But furthermore we identified an additional mechanism that is of more general nature and might be a common basis for the experimental findings. We call it the alternative pathway mechanism.  相似文献   

11.
It has been proposed that part of the anti-aging mechanism of caloric restriction (CR) involves a reduction in both the generation rate of reactive oxygen species (ROS) by mitochondria, and a reduction in peroxidizability of mitochondrial membranes. It was hypothesized that these effects may be due to upstream changes in hormonal status, since certain hormones (such as insulin) are stimulatory for ROS production, effect fatty acid composition, and are lowered by CR. To investigate this hypothesis, young male Brown-Norway rats on 55% CR (4 months duration) were subjected to insulin replacement by use of mini-osmotic pumps. ROS and free radical-induced malondialdehdye production were significantly lower in mitochondria from CR animals compared to those from fully fed, and these effects were reversed by insulin. It is concluded that the beneficial changes induced by CR, as seen at the mitochondrion, may in part be downstream effects of alterations in hormonal signalling.  相似文献   

12.
The purpose of this study was to understand the nature of the causes underlying the senescence-related decline in skeletal muscle mass and performance. Protein and lipid oxidative damage to upper hindlimb skeletal muscle mitochondria was compared between mice fed ad libitum and those restricted to 40% fewer calories—a regimen that increases life span by 30–40% and attenuates the senescence-associated decrement in skeletal muscle mass and function. Oxidative damage to mitochondrial proteins, measured as amounts of protein carbonyls and loss of protein sulfhydryl content, and to mitochondrial lipids, determined as concentration of thiobarbituric acid reactive substances, significantly increased with age in the ad libitum-fed (AL) C57BL/6 mice. The rate of superoxide anion radical generation by submitochondrial particles increased whereas the activities of antioxidative enzymes superoxide dismutase, catalase, and glutathione peroxidase in muscle homogenates remained unaltered with age in the AL group. In calorically-restricted (CR) mice there was no age-associated increase in mitochondrial protein or lipid oxidative damage, or in superoxide anion radical generation. Crossover studies, involving the transfer of 18- to 22-month-old mice fed on the AL regimen to the CR regimen, and vice versa, indicated that the mitochondrial oxidative damage could not be reversed by CR or induced by AL feeding within a time frame of 6 weeks. Results of this study indicate that mitochondria in skeletal muscles accumulate significant amounts of oxidative damage during aging. Although such damage is largely irreversible, it can be prevented by restriction of caloric intake.  相似文献   

13.
The main objective of this review is to provide an appraisal of the current status of the relationship between energy intake and the life span of animals. The concept that a reduction in food intake, or caloric restriction (CR), retards the aging process, delays the age-associated decline in physiological fitness, and extends the life span of organisms of diverse phylogenetic groups is one of the leading paradigms in gerontology. However, emerging evidence disputes some of the primary tenets of this conception. One disparity is that the CR-related increase in longevity is not universal and may not even be shared among different strains of the same species. A further misgiving is that the control animals, fed ad libitum (AL), become overweight and prone to early onset of diseases and death, and thus may not be the ideal control animals for studies concerned with comparisons of longevity. Reexamination of body weight and longevity data from a study involving over 60,000 mice and rats, conducted by a National Institute on Aging-sponsored project, suggests that CR-related increase in life span of specific genotypes is directly related to the gain in body weight under the AL feeding regimen. Additionally, CR in mammals and “dietary restriction” in organisms such as Drosophila are dissimilar phenomena, albeit they are often presented to be the very same. The latter involves a reduction in yeast rather than caloric intake, which is inconsistent with the notion of a common, conserved mechanism of CR action in different species. Although specific mechanisms by which CR affects longevity are not well understood, existing evidence supports the view that CR increases the life span of those particular genotypes that develop energy imbalance owing to AL feeding. In such groups, CR lowers body temperature, rate of metabolism, and oxidant production and retards the age-related pro-oxidizing shift in the redox state.  相似文献   

14.
We have recently shown in non‐human primates that caloric restriction (CR) initiated during adulthood can delay T‐cell aging and preserve naïve CD8 and CD4 T cells into advanced age. An important question is whether CR can be initiated at any time in life, and whether age at the time of onset would modulate the beneficial effects of CR. In the current study, we evaluated the impact of CR started before puberty or during advanced age on T‐cell senescence and compared it to the effects of CR started in early adulthood. Our data demonstrate that the beneficial effects of adult‐onset CR on T‐cell aging were lost by both early and late CR onset. In fact, some of our results suggest that inappropriate initiation of CR may be harmful to the maintenance of T‐cell function. This suggests that there may be an optimal window during adulthood where CR can delay immune senescence and improve correlates of immunity in primates.  相似文献   

15.
16.
17.
The hippocampus is critical for cognition and memory formation and is vulnerable to age‐related atrophy and loss of function. These phenotypes are attenuated by caloric restriction (CR), a dietary intervention that delays aging. Here, we show significant regional effects in hippocampal energy metabolism that are responsive to age and CR, implicating metabolic pathways in neuronal protection. In situ mitochondrial cytochrome c oxidase activity was region specific and lower in aged mice, and the impact of age was region specific. Multiphoton laser scanning microscopy revealed region‐ and age‐specific differences in nicotinamide adenine dinucleotide (NAD)‐derived metabolic cofactors. Age‐related changes in metabolic parameters were temporally separated, with early and late events in the metabolic response to age. There was a significant regional impact of age to lower levels of PGC‐1α, a master mitochondrial regulator. Rather than reversing the impact of age, CR induced a distinct metabolic state with decreased cytochrome c oxidase activity and increased levels of NAD(P)H. Levels of hippocampal PGC‐1α were lower with CR, as were levels of GSK3β, a key regulator of PGC‐1α turnover and activity. Regional distribution and colocalization of PGC‐1α and GSK3β in mouse hippocampus was similar in monkeys. Furthermore, the impact of CR to lower levels of both PGC‐1α and GSK3β was also conserved. The studies presented here establish the hippocampus as a highly varied metabolic environment, reveal cell‐type and regional specificity in the metabolic response to age and delayed aging by CR, and suggest that PGC‐1α and GSK3β play a role in implementing the neuroprotective program induced by CR.  相似文献   

18.
Aging is associated with oxidative damage and an imbalance in redox signaling in a variety of tissues, yet little is known about the extent of age-induced oxidative stress in the sympathoadrenal system. Lifelong caloric restriction has been shown to lower levels of oxidative stress and slow the aging process. Therefore, the aims of this study were twofold: (1) to investigate the effect of aging on oxidative stress in the adrenal medulla and hypothalamus and (2) determine if lifelong 40% caloric restriction (CR) reverses the adverse effects of age-induced oxidative stress in the sympathetic adrenomedullary system. Adult (18 months) and very old (38 months) male Fischer 344 x Brown Norway rats were divided into ad libitum or 40% CR groups and parameters of oxidative stress were analyzed in the adrenal medulla and the hypothalamus. A significant age-dependent increase in lipid peroxidation (+20%, P < 0.05) and tyrosine nitration (+111%, P < 0.001) were observed in the adrenal medulla while age resulted in a reduction in the protein expression of key antioxidant enzymes, CuZnSOD (−27%, P < 0.01) and catalase (−27%, P < 0.05) in the hypothalamus. Lifelong CR completely prevented the age-induced increase in lipid peroxidation in the adrenal medulla and restored the age-related decline in antioxidant enzymes in the hypothalamus. These data indicate that aging results in a significant increase in oxidative stress in the sympathoadrenal system. Importantly, lifelong CR restored the age-related changes in oxidative stress in the adrenal medulla and hypothalamus. Caloric restriction could be a potential non-pharmacological intervention to prevent increased oxidative stress in the sympathetic adrenomedullary system with age.  相似文献   

19.
Aging research has developed rapidly over the past decade, identifying individual genes and molecular mechanisms of the aging process through the use of model organisms and high throughput technologies. Calorie restriction (CR) is the most widely researched environmental manipulation that extends lifespan. Activation of the NAD+‐dependent protein deacetylase Sir2 (S ilent I nformation R egulator 2) has been proposed to mediate the beneficial effects of CR in the budding yeast Saccharomyces cerevisiae, as well as other organisms. Here, we show that in contrast to previous reports, Sir2 is not stimulated by CR to strengthen silencing of multiple reporter genes in the rDNA of S. cerevisiae. CR does modestly reduce the frequency of rDNA recombination, although in a SIR2‐independent manner. CR‐mediated repression of rDNA recombination also does not correlate with the silencing of Pol II‐transcribed noncoding RNAs derived from the rDNA intergenic spacer, suggesting that additional silencing‐independent pathways function in lifespan regulation.  相似文献   

20.
In eukaryotic cells, Ca(2+)-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca(2+)/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca(2+) sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, we investigated a relationship between Ca(2+) signaling and life span in yeast. Here we show that Ca(2+) affected the replicative life span (RLS) of yeast. Increased external and intracellular Ca(2+) levels caused a reduction in their RLS. Consistently, the increase in calcineurin activity by either the zds1 deletion or the constitutively activated calcineurin reduced RLS. Indeed, the shortened RLS of zds1Δ cells was suppressed by the calcineurin deletion. Further, the calcineurin deletion per se promoted aging without impairing the gene silencing typically observed in short-lived sir mutants, indicating that calcineurin plays an important role in a regulation of RLS even under normal growth condition. Thus, our results indicate that Ca(2+) homeostasis/Ca(2+) signaling are required to regulate longevity in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号