首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We have investigated the effects of poly(ethylene glycol) (PEG) on the structure and phase behavior of multilamellar vesicles of dihexadecylphosphatidylcholine (DHPC-MLVs) using an X-ray diffraction method. At low concentrations of PEG-6K (MW = 7500), DHPC-MLVs were in an interdigitated gel (L(beta)I) phase, a gel phase with interdigitated hydrocarbon chains. At around 24% (w/v) PEG 6K, a phase transition from the L(beta)I phase to a bilayer gel phase occurred in the DHPC-MLVs, and above this concentration, they were in a bilayer gel phase. On the other hand, ethylene glycol (EG), the monomer of PEG, did not induce this phase transition in the DHPC-MLVs. A mechanism of this phase transition is proposed and discussed; a decrease in the repulsive interaction between the head groups of the phospholipids in the bilayer gel phase with an increase in PEG concentration, which is due to a decrease in the cross-sectional area of the head group region by osmotic stress, may be the main reason for this phase transition.  相似文献   

2.
We have investigated effects of dimethylsulfoxide (DMSO) on the phase stability of multilamellar vesicles of the ether-linked 1,2-dihexadecyl-sn-glycero-3-phosphatidylcholine (DHPC-MLV), which is known to be in the interdigitated gel (LbetaI) phase in excess water at 20 degrees C. The results of X-ray diffraction experiments indicate that the DHPC membrane was in the Lbeta, phase at X> or =0.12 (X=mole fraction of DMSO in DMSO/water mixture). The result of differential scanning calorimetry indicate that the gel to liquid-crystalline phase transition temperature increased, but the LbetaI to Pbeta, phase transition temperature decreased with an increase in DMSO concentration. These results show that DMSO stabilizes the bilayer gel phase rather than the LbetaI phase at its low concentration. The solubility of phosphorylcholine, which is the same structure as the headgroup of DHPC, decreased with an increase in DMSO concentration, indicating that the interaction free energy of the hydrophilic segments of the membrane with solvents increases with an increase in DMSO concentration. On the basis of the thermodynamic analysis, the mechanism of the stabilization of the bilayer gel phase of DHPC-MLV by DMSO is discussed. The decrease in the repulsive interaction between the headgroups of the phospholipid induced by the low concentrations of DMSO in water plays an important role in this stabilization.  相似文献   

3.
Trehalose is believed to have the ability to protect some organisms against low temperatures. To clarify the cryoprotective mechanism of trehalose, the structure and the phase behavior of fully hydrated dihexadecylphosphatidylcholine (DHPC) membranes in the presence of various concentrations of trehalose were studied by means of differential scanning calorimetry (DSC), static x-ray diffraction, and simultaneous x-ray diffraction and DSC measurements. The temperature of the interdigitated gel (Lbeta(i))-to-ripple (Pbeta') phase transition of DHPC decreases with a rise in trehalose concentration up to approximately 1.0 M. Above a trehalose concentration of approximately 1.0 M, no Lbeta(i) phase is observed. In this connection, the electron density profile calculated from the lamellar diffraction data in the presence of 1.6 M trehalose indicates that DHPC forms noninterdigitated bilayers below the P beta' phase. It was concluded that trehalose destabilizes the Lbeta(i) phase of DHPC bilayers. This suggests that trehalose reduces the area at the interface between the lipid and water. The relation between this effect of trehalose and a low temperature tolerance was discussed from the viewpoint of cold-induced denaturation of proteins.  相似文献   

4.
Dihexadecylphosphatidylcholine (DHPC)/cholesterol binary mixtures in excess of water have been characterized by small-angle X-ray diffraction and differential scanning calorimetry and a temperature-composition phase diagram for this binary has been constructed. The property of cholesterol to perturb the hydrocarbon chain interdigitation in the lamellar gel phase of DHPC and to convert it into a non-interdigitated state has been observed by small- angle X-ray diffraction at cholesterol concentrations as low as 0.1 mol%. The interdigitated and non-interdigitated lamellar gel phases coexist in the range up to 5 mol% cholesterol. At this and higher cholesterol concentrations only non-interdigitated phases have been found in the phase diagram of the mixture. It is suggested that the ability of cholesterol in low concentration to eliminate the hydrocarbon chain interdigitation is related to the free energy increase due to unfavourable line boundaries between the interdigitated and non-interdigitated lipid domains.  相似文献   

5.
Thermotropic transitions of dihexadecylphosphatidylcholine (DHPC) dispersions in hydrogen oxide (1H2O) and deuterium oxide (2H2O) were investigated by differential scanning calorimetry (DSC). In DHPC dispersions, transition temperature between interdigitated gel phase (L beta I) and ripple phase (P beta') is lower in 2H2O than in 1H2O, and transition between the ripple phase (P beta') and fluid phase (L alpha) in 2H2O occurs at a temperature slightly higher than in 1H2O. In dipalmitoylphosphatidylcholine (DPPC) dispersions, on the other hand, transition temperature between lamellar gel phase (L beta') and ripple phase is higher in 2H2O than in 1H2O. These results suggest that the interdigitated gel phase is more stable in 1H2O than in 2H2O. To account for the shift of transition temperature by the water substitution, difference of interfacial energies between these aqueous environments is discussed.  相似文献   

6.
The temperature dependence of the mean orientational order parameter in the vicinity of the liquid crystal to gel phase transition is obtained from the first moment M1 of deuterium nuclear magnetic resonance spectra for bilayers of chain perdeuterated phosphatidylcholines with acyl chains of 12, 14, 16, and 18 carbons. The data clearly show an increasing temperature dependence of the orientational order parameter in the vicinity of the transition, with the effect becoming more pronounced with decreasing chain length. Assuming a linear relationship between the mean orientational order parameter and the extension of the acyl chain, estimates of the change in area of the membrane at the transition are shown to be consistent with those obtained from other measurements. It is shown that the transition may be modeled in terms of a Landau expansion of the free energy involving a small number of phenomenological parameters. From this it is shown that the behavior of these systems in the temperature range of interest is, in large part, controlled by the close proximity of a spinodal to the transition temperature.  相似文献   

7.
During composting of household waste, the acidity of the material affects the process during the initial phase of rising temperature. In this study, the effects of temperature (36-46 degrees C) and pH (4.6-9.2) on the respiration rate during the early phase of composting were investigated in two different composts. A respiration method where small compost samples were incubated at constant temperature was used. The respiration rate was strongly reduced at 46 degrees C and pH below 6, compared to composts with a higher pH or lower temperature. The combination of high temperature and low pH is a possible adverse factor in large-scale composting of food waste.  相似文献   

8.
Dipalmitoylphosphatidylcholine (DPPC) dispersed in perdeuterated glycerol was investigated in order to determine the effects on the Raman spectra of hydrocarbon chain interdigitation in gel-phase lipid bilayers. Interdigitated DPPC bilayers formed from glycerol dispersions in the gel phase showed a decrease in the peak height intensity I2850/I2880 ratio, for the symmetric and asymmetric methylene CH stretching modes, respectively, as compared to non-interdigitated DPPC/water gel-phase dispersions. The decrease in this spectral ratio is interpreted as an increase in chain-chain lateral interactions. Spectra recorded in the 700–740 cm?1 CN stretching mode region, the 1000–1200 cm?1 CC stretching mode region and the 1700–1800 cm? CO stretching mode region were identical for both the interdigitated and non-interdigitated hydrocarbon chain systems. At low temperatures the Raman peak height intensity ratios I2935/I2880 were identical for the DPPC/glycerol and DPPC/water dispersions, indicating that this specific index for monitoring bilayer behavior is insensitive to acyl chain interdigitation. The increase, however, in the change of this index at the gel-liquid crystalline phase transition temperature for the DPPC/glycerol dispersions implies a larger entropy of transition in comparison to the non-interdigitated DPPC/water bilayer system.  相似文献   

9.
The statistical analysis of current fluctuations in unmodified bilayer lipid membranes at the phase transition temperature was made. An exponential distribution of current fluctuations was revealed.  相似文献   

10.
The effect of the electric field on the phase transition temperature (Tc) of acidic 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) and 1,2-dipalmitoyl-sn-glycero-3-thionphosphate (thion-DPPA) and zwitterion, i.e. 1,2-dipalmitoyl-rac-3-phosphocholine and 1,2-distearoyl-rac-glycero-3-phosphocholine (DPPC and DSPC), lipids has been investigated. The phase transition was detected using the jump-like increase effect in the conductance of the planar bilayer membrane. A voltage increase to 150 mV has been shown to increase the phase transition temperature in a bilayer lipid membrane (BLM) of phosphatidic acids (DPPA and thion-DPPA) by 8-12 degrees C while the transition temperature in the bilayer of zwitterion lipids (DPPC and DSPC) increases insignificantly. The increasing of Tt in BLM of acidic lipids is attributed to the voltage-induced changes in the molecule packing density.  相似文献   

11.
The gel-to-liquid-crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was observed in the presence of various types of surfactants; sodium alkylsulfates, alkyltrimethylammonium bromides, alkanoyl-N-methylglucamides, and hexaethyleneglycol mono n-dodecyl ether. The phase transition was monitored by a change in scattered light intensity of the lipid suspension. For all the surfactants examined, the phase transition temperature was depressed linearly with the surfactant concentration in the measured concentration range, from which the partition coefficient, K, of the surfactant between bulk solution and lipid membrane was estimated. Except alkyltrimethylammonium bromides, log K and log CMC showed a linear relationship, which indicates that the driving force to transfer the surfactant from bulk solution to lipid membrane is a hydrophobic interaction. The addition of surfactants increased the transition width. The extent of widening the transition width was in the order of sodium alkylsulfate greater than alkyltrimethylammonium bromides greater than hexaethyleneglycol mono n-dodecyl ether; in the case of alkanoyl-N-methylglucamides, the transition width was not affected by the addition. These effects on the transition width was interpreted qualitatively in terms of the cooperativity of the transition.  相似文献   

12.
We previously reported that 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) forms an interdigitated gel phase in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine (16:0LPC) at concentrations below 30 mol%. In the present investigation, fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), X-ray diffraction, and differential scanning calorimetry (DSC) were used to investigate the effect of cholesterol on the phase behavior of 16:0LPC/DPPC binary mixtures. At 25 degrees C, 30 mol% 16:0LPC significantly decreases the DPH fluorescence intensity during the transition of DPPC from the L(beta') phase to the L(betaI) phase. However, the addition of cholesterol to 16:0LPC/DPPC mixtures results in a substantial increase in fluorescence intensity. The changes in DPH fluorescence intensity reflect the probe's redistribution from an orientation parallel to the acyl chain to the center of the bilayer, suggesting a bilayer structure transition from interdigitation to noninterdigitation. The normal repeat period of small angle X-ray diffraction patterns can be restored and a reflection appears at 0.42 nm with a broad shoulder around 0.41 nm in wide angle X-ray diffraction patterns when 10 mol% cholesterol is incorporated into 30 mol% 16:0LPC/DPPC vesicles, indicating that the mixtures are in the gel phase (L(beta')). Moreover, DSC results demonstrate that 10 mol% cholesterol is sufficient to significantly decrease the main enthalpy, cooperativity and lipid chain melting of 30 mol% 16:0LPC/DPPC binary mixtures, which are L(betaI), indicating that the transition of the interdigitated phase is more sensitive to cholesterol than that of the noninterdigitated phase. Our data imply that the interdigitated gel phase induced by 16:0LPC is prevented in the presence of 10 mol% cholesterol, but unlike ethanol, an increasing concentration of 16:0LPC is not able to restore the interdigitation structure of the lipid mixtures.  相似文献   

13.
The electrical capacity of planar bilayer lipid membranes (BLM) from natural hydrogenated egg lecithin (HEL) in n-decane at a temperature of phase transition was measured. The temperature of phase transition was determined calorimetrically to be 51 degrees C. The data obtained revealed a phase separation of HEL in BLM into two fractions, one freezing at 42-44 degrees C and one that is converted to a liquid-crystal state at 51-59 degrees C. It was assumed that the first fraction is rich in dipalmitoyl lecithin, and the second fraction is rich in distearoyl lecithin. Freezing and the transition to the liquid-crystal state were accompanied by an increase and decrease in membrane thickness, respectively, in part due to a displacement of the solvent from the torus to the planar part of the bilayer. The displacement of the solvent is explained by changes in the disjoining pressure in BLM, which arises across the lipid bilayer due to van der Waals forces of attraction between water layers on both sides of the BLM.  相似文献   

14.
We have investigated the effects of anionic dioleoylphosphatidic acid (DOPA) on the structure and phase behavior of dipalmitoleoylphosphatidylethanolamine (DPOPE) membranes by small-angle X-ray scattering. The results of X-ray diffraction experiments indicate that an L(alpha) to H(II) phase transition in DPOPE membranes occurred at 2.5 mol% DOPA, and above 4.0 mol% they were completely in the H(II) phase. And in the presence of 0.5 M KCl, the critical concentration of DOPA was decreased to 0.6 mol%. These results show that low concentrations of DOPA stabilize the H(II) phase rather than the L(alpha) phase in DPOPE membranes. The absolute spontaneous curvature of DPOPE membrane was gradually decreased with an increase in DOPA concentrations. On the basis of these results, the H(II) phase stability in DPOPE membranes due to low DOPA concentrations is discussed by the spontaneous curvature of monolayer membrane, the packing energy of alkyl chains of the membrane and lipid packing parameter.  相似文献   

15.
Hydrophobic cavities at the membrane/water interface are stably expressed in interdigitated membranes. The nonsolvent water associated with 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (Hxdc(2)GroPCho) in the interdigitated (L(beta)I) and ripple (P(beta')) states and with its ester analogue 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (Pam(2)PtdCho) in the gel (L(beta')) and P(beta') states are determined directly. In the L(beta)I state at lower temperatures (4-20 degrees C), 16-18 water molecules per phospholipid are bound, consistent with water-filled cavities and hydrated headgroups. At 28 degrees C, the nonsolvent water decreases to 12, consistent with a reduction of the cavity depth by 0.34 nm due to increased chain interpenetration. This geometric lability may be a common feature of hydrophobic cavities. Only 5.4 waters are bound in the noninterdigitated P(beta') (40 degrees C), whereas the ester bound 8.1 waters in its P(beta') (37 degrees C), a difference of about one water per ester carbonyl. The relative dehydration of the ether linkage is consistent with it promoting more densely packed structures, which in turn, accounts for its ability to interdigitate.  相似文献   

16.
The increase in passive permeability of bilayer membranes near the phase transition temperature is usually explained as caused by either the increase in the amount of ‘boundary lipid’ present in the membrane, or by the increase in lateral compressibility of the membrane. Since both the amount of ‘boundary lipid’ and the lateral compressibility show a similar anomaly near the transition temperature, it is difficult to distinguish experimentally between the two proposed mechanisms.We have examined some details of both of the proposed pictures. The fluid-solid boundary energy, neglected in previous work, has been computed as a function of the domain size. For a single component uncharged lipid bilayer, the results rule out the existence of even loosely defined solid domains in a fluid phase, or vice versa. Thermodynamic fluctuations, which are responsible for anomalous behaviour near the phase transition temperature, are not intense enough to approximate the formation of a domain of the opposite phase.Turning next to lateral compressibility of bilayer membranes we have considered two-component mixtures in the phase separation region. We present the first calculation of lateral compressibility for such systems. The behaviour shows interesting anomalies, which should correlate with existing and future data on transport across membranes.  相似文献   

17.
We present a quantitative study of the effect of sugars on the membrane gel-fluid phase transition as a function of sugar:lipid ratio. We show that the maximum effect occurs at around 1.5 sugar rings per molecule for both mono- and di-saccharides. We present a theoretical model to try to explain these results, and discuss the assumptions inherent in the model.  相似文献   

18.
Effects of ethanol on dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) dispersions were investigated with an automated scanning density meter and a differential scanning calorimeter (DSC). The temperature-dependent profile of specific volume measured by the density meter clearly exhibited phase transitions of the DPPC and the DSPC dispersions as drastic changes in the thermal expansion coefficients. On increasing the ethanol concentration in the DPPC dispersions, the pretransition temperature was reduced faster than the main transition temperature was. An interdigitated gel phase (L beta I) appeared as a region of lower specific volume at the pretransition temperature when the ethanol concentration reached 40 mg/ml. The L beta I phase spread both its ends in an ethanol-dependent fashion, and the high-temperature end merged to the main transition at 50 mg/ml of ethanol. The temperature-ethanol phase diagram has been determined for DPPC. The transitions L beta' to L beta I and from L beta I to P beta' were also observed on the thermograms of DSC measurements. In the DSPC dispersions, the L beta I phase was induced between the L beta' and the P beta' phases by a lower ethanol concentration (about 20 mg/ml).  相似文献   

19.
20.
E S Rowe  T A Cutrera 《Biochemistry》1990,29(45):10398-10404
It is well established that ethanol and other amphipathic molecules induce the formation of a fully interdigitated gel phase in saturated like-chain phosphatidylcholines (PC's). We have previously shown that the induction of interdigitation in PC's by ethanol is dependent upon the alcohol concentration, the lipid chain length, and the temperature [Nambi, P., Rowe, E. S. & McIntosh, T. J. (1988) Biochemistry 27, 9175-9182]. In the present study, we have used high-sensitivity differential scanning calorimetry to investigate the transitions of distearoylphosphatidylcholine between the noninterdigitated and the interdigitated phases. The enthalpy of the L beta' to L beta I transition is approximately half that of the L beta' to P beta' transition which occurs in the absence of ethanol. The reversibility of these transitions has also been investigated by employing both heating and cooling scans in order to establish the most stable phases as a function of temperature and ethanol concentration. It has been demonstrated that the transition to the interdigitated phase is reversible as a function of temperature. Kinetic studies on the reverse transition (L beta I to L beta') demonstrate that this transition can be very slow, requiring weeks to reach completion. The rate depends upon temperature and ethanol concentration. The slow phase changes mean that the lipid can exist for long periods of time in a phase structure which is not the most stable state. The biological significance of this type of lipid behavior is the implication that the phase structure of biological membranes may depend not only on the most stable phase structure of the lipids present but also on the synthetic pathway or other kinetic variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号