首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes has found widespread application for analyzing the composition of microbial communities in complex environmental samples. Although bacteria can quickly be detected by FISH, a reliable method to determine absolute numbers of FISH-stained cells in aggregates or biofilms has, to our knowledge, never been published. In this study we developed a semiautomated protocol to measure the concentration of bacteria (in cells per volume) in environmental samples by a combination of FISH, confocal laser scanning microscopy, and digital image analysis. The quantification is based on an internal standard, which is introduced by spiking the samples with known amounts of Escherichia coli cells. This method was initially tested with artificial mixtures of bacterial cultures and subsequently used to determine the concentration of ammonia-oxidizing bacteria in a municipal nitrifying activated sludge. The total number of ammonia oxidizers was found to be 9.8 x 10(7) +/- 1.9 x 10(7) cells ml(-1). Based on this value, the average in situ activity was calculated to be 2.3 fmol of ammonia converted to nitrite per ammonia oxidizer cell per h. This activity is within the previously determined range of activities measured with ammonia oxidizer pure cultures, demonstrating the utility of this quantification method for enumerating bacteria in samples in which cells are not homogeneously distributed.  相似文献   

2.
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes has found widespread application for analyzing the composition of microbial communities in complex environmental samples. Although bacteria can quickly be detected by FISH, a reliable method to determine absolute numbers of FISH-stained cells in aggregates or biofilms has, to our knowledge, never been published. In this study we developed a semiautomated protocol to measure the concentration of bacteria (in cells per volume) in environmental samples by a combination of FISH, confocal laser scanning microscopy, and digital image analysis. The quantification is based on an internal standard, which is introduced by spiking the samples with known amounts of Escherichia coli cells. This method was initially tested with artificial mixtures of bacterial cultures and subsequently used to determine the concentration of ammonia-oxidizing bacteria in a municipal nitrifying activated sludge. The total number of ammonia oxidizers was found to be 9.8 × 107 ± 1.9 × 107 cells ml−1. Based on this value, the average in situ activity was calculated to be 2.3 fmol of ammonia converted to nitrite per ammonia oxidizer cell per h. This activity is within the previously determined range of activities measured with ammonia oxidizer pure cultures, demonstrating the utility of this quantification method for enumerating bacteria in samples in which cells are not homogeneously distributed.  相似文献   

3.
The use of fluorescence in situ hybridization (FISH) to identify and enumerate soil bacteria has long been hampered by the autofluorescence of soil particles masking the bacterial signals and because the need of counting hundreds of bacteria in order to achieve statistically reliable data is time consuming. Recently, it was demonstrated that Nycodenz facilitates FISH in soil by concentrating bacteria on membrane filters and avoiding autofluorescent soil particles. We present a routine protocol for FISH in soil including the use of Nycodenz. The protocol allows fast and easy enumeration of hundreds of bacteria. We propose the use of silicon grease coated slides to treat in parallel seven samples per hybridization. Further, we developed a semi-automated approach for the enumeration of bacteria by implementing macros concatenating all steps of the image analyzes in the Image J software. Using Nycodenz, software-assisted bacterial counts statistically matched eye-counts of the same images and it was possible to count 880 DAPI stained bacteria per ten images. Fifty-five percent of these bacteria were co-labelled with the FISH probe specific for the Domain Bacteria, in accordance with recent FISH studies of bacterial populations in bulk soil. With a soil slurry protocol used for comparison, soil particles impaired automatic counts of the bacteria and FISH analysis, and only 88 DAPI stained bacteria per ten images could be counted by eye. With the Nycodenz protocol, 5 mM Na(2)EDTA used as an extractant increased the number of bacteria observed by 49%. In contrast, Tween 20 (1% or 5%) had no significant effect and increased the variability between the samples. Overall, the proposed procedure allows to process a high number of samples and to achieve a time efficient FISH characterization of soil bacterial communities.  相似文献   

4.
There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization (FISH), catalyzed reporter deposition FISH (CARD-FISH), polyribonucleotide FISH, or quantitative PCR (qPCR). To estimate efficiency, we defined “yield” to be the sum of bacteria and archaea counted by these techniques divided by the total number of cells. In seawater, the yield was high (median, 71%) and was similar for FISH, CARD-FISH, and polyribonucleotide FISH. In sediments, only measurements by CARD-FISH in which archaeal cells were permeabilized with proteinase K showed high yields (median, 84%). Therefore, the majority of cells in both environments appear to be alive, since they contain intact ribosomes. In sediments, the sum of bacterial and archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even after accounting for variations in copy numbers per genome. However, qPCR measurements were precise relative to other qPCR measurements made on the same samples. qPCR is therefore a reliable relative quantification method. Inconsistent results for the relative abundance of bacteria versus archaea in deep subsurface sediments were resolved by the removal of CARD-FISH measurements in which lysozyme was used to permeabilize archaeal cells and qPCR measurements which used ARCH516 as an archaeal primer or TaqMan probe. Data from best-practice methods showed that archaea and bacteria decreased as the depth in seawater and marine sediments increased, although archaea decreased more slowly.  相似文献   

5.
When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method and duration of sample dispersion were optimized to reduce the interference of cell aggregates. An automated image analysis program that detects cells from 4',6'-diamidino-2-phenylindole (DAPI) micrographs and extracts the maximum and mean fluorescence intensities for each cell from corresponding FISH images was developed with the software Visilog. Intensity thresholds were not consistent even for duplicate analyses, so alternative ways of classifying signals were investigated. In the resulting method, the intensity data were divided into clusters using fuzzy c-means clustering, and the resulting clusters were classified as target (positive) or nontarget (negative). A manual quality control confirmed this classification. With this method, 50.4, 72.1, and 64.9% of the cells in two swine manure samples and one soil sample, respectively, were positive as determined with a 16S rRNA-targeted bacterial probe (S-D-Bact-0338-a-A-18). Manual counting resulted in corresponding values of 52.3, 70.6, and 61.5%, respectively. In two swine manure samples and one soil sample 21.6, 12.3, and 2.5% of the cells were positive with an archaeal probe (S-D-Arch-0915-a-A-20), respectively. Manual counting resulted in corresponding values of 22.4, 14.0, and 2.9%, respectively. This automated method should facilitate quantitative analysis of FISH images for a variety of complex environmental samples.  相似文献   

6.
Chlorinated ethenes contamination of soil and groundwater is a widespread problem in most industrialized countries. To date, there is a general consensus in the literature that members of the genus Dehalococcoides are required for complete dechlorination of these compounds. The availability of specific identification tools to track their distribution in the field is therefore a topic of particular relevance in environmental studies. These microorganisms have been successfully visualized by fluorescence in situ hybridization (FISH) in highly active dechlorinating cultures. However, FISH detection of Dehalococcoides under low activity conditions can be strongly hampered by their small cell size and low ribosome content. In this study, catalyzed reporter deposition (CARD)-FISH was employed as an alternative detection method. In a trichloroethene (TCE) dechlorinating enrichment culture, CARD-FISH, using proteinase K as a permeabilization pre-treatment, was found to be significantly superior to conventional FISH in terms of both microscopic visualization and quantification efficiency (about 30%). An application of this method on contaminated aquifer samples is also presented and discussed.  相似文献   

7.
Ralstonia eutropha KT1, which degrades trichloroethylene, was injected into the aquifer after activation with toluene, and then the number of bacteria was monitored by in situ PCR targeting the phenol hydroxylase gene and by fluorescent in situ hybridization (FISH) targeting 16S rRNA. Before injection of the bacterial suspension, the total concentration of bacteria in the groundwater was approximately 3 x 10(5) cells/ml and the amount of Ralstonia and bacteria carrying the phenol hydroxylase gene as a percentage of total bacterial cells was less than 0.1%. The concentration of bacteria carrying the phenol hydroxylase gene detected by in situ PCR was approximately 3 x 10(7) cells/ml 1 h after injection, and the concentration of Ralstonia detected by FISH was similar. The number of bacteria detected by in situ PCR was similar to that detected by FISH 4 days after the start of the extraction of groundwater. On and after day 7, however, the number of bacterial cells detected by FISH was less than that detected by in situ PCR.  相似文献   

8.
Microbial cell concentration is a particularly important bioindicator of soil health and a yardstick for determining biological quotients which are likely to gain in ecological significance if they are calculated in relation to the viable, rather than total, microbial density. A dual-staining technique with fluorescent dyes was used for the spectrofluorimetric quantitative determination of the concentration of viable microbial cells present in three different soil types. This is a novel and substantially modified application of the dual-staining procedure implemented in the LIVE/DEAD BacLight viability kit which has never been successfully applied to the quantification of naturally occurring soil microbial communities. Indigenous microbial cell concentrations were quantified using an internal standard, i.e. spiking environmental samples with suspensions containing different concentrations of live E. coli cells, and external calibration, by comparing fluorescence emission by indigenous bacteria and known concentrations of E. coli in nutrient saline. Two types of environmental samples were tested: bacterial preparations obtained by density gradient centrifugation and soil suspensions. In both cases, prior dilution of the sample was necessary to minimise fluorescence quenching by soil particulate matter. Spectrofluorimetric measurements of indigenous cell concentration in bacterial preparations were in close agreement with those found using epifluorescence microscopy. Limits of detection of 5x10(6) for the soil bacterial preparations and 8x10(7) for the soil suspensions were estimated. Deviations observed when soil suspensions are dealt with are likely due to the selection of a unique bacterial strain for standardisation and calibration. Thorough testing of a variety of reference bacteria and fungi is suggested to determine a more accurate average fluorescence enhancement per microbial cell or mass unit.  相似文献   

9.
It has been demonstrated that ELF97-phosphate (ELF-P) is a useful tool to detect and quantify phosphatase activity of phytoplankton populations at a single cell level. Recently, it has been successfully applied to marine heterotrophic bacteria in culture samples, the cells exhibiting phosphatase activity being detected using epifluorescence microscopy. Here, we describe a new protocol that enables the detection of ELF alcohol (ELFA), the product of ELF-P hydrolysis, allowing the detection of phosphatase positive bacteria, using flow cytometry. Bacteria from natural samples must be disaggregated and, in oligotrophic waters, concentrated before they can be analyzed by flow cytometry. The best efficiency for disaggregating/separating bacterial cell clumps was obtained by incubating the sample for 30 min with Tween 80 (10 mg l(-1), final concentration). A centrifugation step (20,000 g; 30 min) was required in order to recover all the cells in the pellet (only 7+/-2% of the cells were recovered from the supernatant). The cells and the ELFA precipitates were resistant to these treatments. ELFA-labelled samples were stored in liquid nitrogen for up to four months before counting without any significant loss in total or ELFA-labelled bacterial cell abundance or in the ELFA fluorescence intensity. We describe a new flow cytometry protocol for detecting and discriminating the signals from both ELFA and different counterstains (4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)) necessary to distinguish between ELFA-labelled and non ELFA-labelled heterotrophic bacteria. The method has been successfully applied in both freshwater and marine samples. This method promises to improve our understanding of the physiological response of heterotrophic bacteria to P limitation.  相似文献   

10.
Determinations were made of the influence of NaCl concentration, cell density, and flow velocity on the transport of Pseudomonas sp. strain KL2 through columns of aquifer sand under saturated conditions. A pulse-type boundary condition was used. The experiments were conducted by using 0.3-m-long Plexiglas columns with an internal diameter of 0.05 m. When a 1-h pulse of a 0.01 M NaCl solution containing 10(8) cells per ml was added at a flow rate of 10(-4) m s-1, the bacterial density in the effluent never exceeded 2.2% of the density of cells added, and only 1.5% of the bacteria passed through the aquifer material. In contrast, when the bacteria were applied in distilled water, the relative cell density in the effluent approached 100%, and 60% of the bacteria were transported through the aquifer solids. Under these conditions, the breakthrough of Pseudomonas sp. strain KL2 was slower than chloride. When the flow rate was 2.0 x 10(-4) m s-1, the cell density in the effluent reached 7.3% of that added in 0.01 M NaCl solution, but only 3.9% of the bacteria were transported through the aquifer particles. On the other hand, the density in the effluent approached 100% of that added in deionized water, and 77% of the added bacteria were recovered. When the density of added cells was 10(9) cells per ml at a flow rate of 10(-4) m s-1, the densities in the effluent reached 70 and 100% of those added in salt solution and deionized water, respectively, and 44 and 57% of the bacteria were transported through the aquifer solids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Determinations were made of the influence of NaCl concentration, cell density, and flow velocity on the transport of Pseudomonas sp. strain KL2 through columns of aquifer sand under saturated conditions. A pulse-type boundary condition was used. The experiments were conducted by using 0.3-m-long Plexiglas columns with an internal diameter of 0.05 m. When a 1-h pulse of a 0.01 M NaCl solution containing 10(8) cells per ml was added at a flow rate of 10(-4) m s-1, the bacterial density in the effluent never exceeded 2.2% of the density of cells added, and only 1.5% of the bacteria passed through the aquifer material. In contrast, when the bacteria were applied in distilled water, the relative cell density in the effluent approached 100%, and 60% of the bacteria were transported through the aquifer solids. Under these conditions, the breakthrough of Pseudomonas sp. strain KL2 was slower than chloride. When the flow rate was 2.0 x 10(-4) m s-1, the cell density in the effluent reached 7.3% of that added in 0.01 M NaCl solution, but only 3.9% of the bacteria were transported through the aquifer particles. On the other hand, the density in the effluent approached 100% of that added in deionized water, and 77% of the added bacteria were recovered. When the density of added cells was 10(9) cells per ml at a flow rate of 10(-4) m s-1, the densities in the effluent reached 70 and 100% of those added in salt solution and deionized water, respectively, and 44 and 57% of the bacteria were transported through the aquifer solids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In the present paper, the bacterial communities in two soils, one from an agricultural sugarcane cropped field and the other from an unperturbed soil with similar geopedological characteristics, were characterized using the Fluorescence In Situ Hybridization (FISH) method. FISH consists of in situ identification of bacteria using fluorescent labeled 16S rRNA targeted oligonucleotide probes visualizable under epifluorescence microscope. In the cultivated soil, in line with agricultural practice, the pre-emergence herbicide atrazine had been regularly applied each year at a concentration of 5 L/ha. The Shannon Diversity and Evenness Indices were also calculated using the phylogenetic data obtained from the FISH analysis. Although, at the sampling time (6 months after soil atrazine treatment), no residual herbicide concentration was found, the overall bacterial community results show a lower diversity and evenness in the agricultural soil than in the unperturbed one, demonstrating how microbiological indicators are sensitive to anthropogenic disturbance. In the natural soil, the dominant groups were α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria (representing more than 50 % of the bacteria), but in the agricultural soil, their abundance decreased significantly and represented just 31 % of the bacteria domain.  相似文献   

13.
Efficient detachment and purification of bacterial cells associated with streambed sediments are required in order to quantify cell abundance and to assess community composition through the application of epifluorescence microscopy techniques. We applied chemical (i.e., sodium pyrophosphate and polysorbate) and physical treatments (i.e., shaking and sonication), followed by Nycodenz density gradient centrifugation to efficiently recover benthic bacteria. This procedure resulted in a highly purified cell suspension allowing for a precise cell quantification through the application of fluorescent dyes. About 93% of total cells were recovered from the original sediment, with higher recovery from the finer grain-size class (90%) in comparison to the coarse fraction (69%). The potential damaging effects of the applied procedures on cell integrity were assessed on planktonic bacteria in a pre-filtered water control. As a consequence of the high purity of the extracted bacteria, flow cytometry was successfully applied as counting method for sediment cell suspension. However, a significant decrease of protein synthesis in purified samples was measured by estimating the (3)H-Leucine incorporation rates, rising uncertainties on the possibility to apply potential metabolic assays after Nycodenz purification.  相似文献   

14.
We describe a method for microscopic identification of DNA-synthesizing cells in bacterioplankton samples. After incubation with the halogenated thymidine analogue bromodeoxyuridine (BrdU), environmental bacteria were identified by fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-linked oligonucleotide probes. Tyramide signal amplification was used to preserve the FISH staining during the subsequent immunocytochemical detection of BrdU incorporation. DNA-synthesizing cells were visualized by means of an HRP-labeled antibody Fab fragment and a second tyramide signal amplification step. We applied our protocol to samples of prefiltered (pore size, 1.2 micro m) North Sea surface water collected during early autumn. After 4 h of incubation, BrdU incorporation was detected in 3% of all bacterial cells. Within 20 h the detectable DNA-synthesizing fraction increased to >14%. During this period, the cell numbers of members of the Roseobacter lineage remained constant, but the fraction of BrdU-incorporating Roseobacter sp. cells doubled, from 24 to 42%. In Alteromonas sp. high BrdU labeling rates after 4 to 8 h were followed by a 10-fold increase in abundance. Rapid BrdU incorporation was also observed in members of the SAR86 lineage. After 4 h of incubation, cells affiliated with this clade constituted 8% of the total bacteria but almost 50% of the visibly DNA-synthesizing bacterial fraction. Thus, this clade might be an important contributor to total bacterioplankton activity in coastal North Sea water during periods of low phytoplankton primary production. The small size and low ribosome content of SAR86 cells are probably not indications of inactivity or dormancy.  相似文献   

15.
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus NITROSPIRA: The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% +/- 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% +/- 0.28% of the biosludge population in the municipal WWTP and 0.37% +/- 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.  相似文献   

16.
Isotopic labeling of biomarker molecules is a technique applied to link microbial community structure with activity. Previously, we successfully labeled phospholipid fatty acids (PLFA) of suspended nitrate-reducing bacteria in an aquifer. However, the application of the method to low energy-yielding processes such as sulfate reduction, and extension of the analysis to attached communities remained to be studied. To test the feasibility of the latter application, an anoxic test solution of 500 l of groundwater with addition of 0.5 mM Br- as a conservative tracer, 1.1 mM SO4(2-), and 2.0 mM [2-13C]acetate was injected in the transition zone of a petroleum hydrocarbon-contaminated aquifer where sulfate-reducing and methanogenic conditions prevailed. Thousand liters of test solution/groundwater mixture were extracted in a stepwise fashion after 2-46 h incubation. Computed apparent first-order rate coefficients were 0.31+/-0.04 day(-1) for acetate and 0.34+/-0.05 day(-1) for SO4(2-) consumption. The delta13C increased from -71.03 per thousand to +3352.50 per thousand in CH4 and from -16.15 per thousand to +32.13 per thousand in dissolved inorganic carbon (DIC). A mass balance suggested that 43% of the acetate-derived (13)C appeared in DIC and 57% appeared in CH4. Thus, acetate oxidation coupled to sulfate reduction and acetoclastic methanogenesis occurred simultaneously. The delta13C of PLFA increased on average by 27 per thousand in groundwater samples and 4 per thousand in sediment samples. Hence, both suspended and attached communities actively degraded acetate. The PLFA labeling patterns and fluorescent in situ hybridization (FISH) analyses of sediment and groundwater samples suggested that the main sulfate-reducing bacteria degrading the acetate were Desulfotomaculum acetoxidans and Desulfobacter sp. in groundwater, and D. acetoxidans in sediment.  相似文献   

17.
This article describes a novel method of urea and ammonia removal using microencapsulated, genetically engineered Escherichia coli DH5 cells. Optimization of bacterial cell encapsulation was carried out. The optimal method consists of alginate 2.00% (w/v) at a flow rate of 0.0724 mL/min and a coaxial air flow rate of 2.00 L/min. This produces spherical, alginate-poly-L-lysine-alginate (APA) microcapsules of an average 500 +/- 45 mum diameter. Increasing the concentration of alginate from 1.00% to 1.75% improves the quality of the microcapsules, while cell viability remains unaffected. The APA microcapsules are mechanically stable up to 210-rpm agitation with no bacterial cell leakage. The in vitro performance of urea and ammonia removal by encapsulated bacteria is assessed. One hundred milligrams of bacterial cells in APA microcapsules, in their log phase state of growth, can lower 87.89 +/- 2.25% of the plasma urea within 20 min and 99.99% in 30 min. The same amount of encapsulated bacteria can also lower ammonia from 975.14 +/- 70.15 muM/L to 81.151 +/- 7.37 muM/L in 30 min. There are no significant differences in depletion profiles by free and encapsulated bacteria for urea and ammonia removal. This novel approach using microencapsulated, genetically engineered E. coli cells is significantly more efficient than presently available methods of urea and ammonia removal. For instance, it is 30 times more efficient than the standard urease-ammonium adsorbent system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
Cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) was developed to recognize individual genes in a single bacterial cell. In CPRINS, the amplicon was long single-stranded DNA and thus retained within the permeabilized microbial cells. FISH with a multiply labeled fluorescent probe set enabled significant reduction in nonspecific background while maintaining high fluorescence signals of target bacteria. The ampicillin resistance gene in Escherichia coli, chloramphenicol acetyltransferase gene in different gram-negative strains, and RNA polymerase sigma factor (rpoD) gene in Aeromonas spp. could be detected under identical permeabilization conditions. After concentration of environmental freshwater samples onto polycarbonate filters and subsequent coating of filters in gelatin, no decrease in bacterial cell numbers was observed with extensive permeabilization. The detection rates of bacterioplankton in river and pond water samples by CPRINS-FISH with a universal 16S rRNA gene primer and probe set ranged from 65 to 76% of total cell counts (mean, 71%). The concentrations of cells detected by CPRINS-FISH targeting of the rpoD genes of Aeromonas sobria and A. hydrophila in the water samples varied between 2.1 x 10(3) and 9.0 x 10(3) cells ml(-1) and between undetectable and 5.1 x 10(2) cells ml(-1), respectively. These results demonstrate that CPRINS-FISH provides a high sensitivity for microscopic detection of bacteria carrying a specific gene in natural aquatic samples.  相似文献   

19.
Ralstonia eutropha KT1, which degrades trichloroethylene, was injected into the aquifer after activation with toluene, and then the number of bacteria was monitored by in situ PCR targeting the phenol hydroxylase gene and by fluorescent in situ hybridization (FISH) targeting 16S rRNA. Before injection of the bacterial suspension, the total concentration of bacteria in the groundwater was approximately 3 × 105 cells/ml and the amount of Ralstonia and bacteria carrying the phenol hydroxylase gene as a percentage of total bacterial cells was less than 0.1%. The concentration of bacteria carrying the phenol hydroxylase gene detected by in situ PCR was approximately 3 × 107 cells/ml 1 h after injection, and the concentration of Ralstonia detected by FISH was similar. The number of bacteria detected by in situ PCR was similar to that detected by FISH 4 days after the start of the extraction of groundwater. On and after day 7, however, the number of bacterial cells detected by FISH was less than that detected by in situ PCR.  相似文献   

20.
We describe a method for microscopic identification of DNA-synthesizing cells in bacterioplankton samples. After incubation with the halogenated thymidine analogue bromodeoxyuridine (BrdU), environmental bacteria were identified by fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-linked oligonucleotide probes. Tyramide signal amplification was used to preserve the FISH staining during the subsequent immunocytochemical detection of BrdU incorporation. DNA-synthesizing cells were visualized by means of an HRP-labeled antibody Fab fragment and a second tyramide signal amplification step. We applied our protocol to samples of prefiltered (pore size, 1.2 μm) North Sea surface water collected during early autumn. After 4 h of incubation, BrdU incorporation was detected in 3% of all bacterial cells. Within 20 h the detectable DNA-synthesizing fraction increased to >14%. During this period, the cell numbers of members of the Roseobacter lineage remained constant, but the fraction of BrdU-incorporating Roseobacter sp. cells doubled, from 24 to 42%. In Alteromonas sp. high BrdU labeling rates after 4 to 8 h were followed by a 10-fold increase in abundance. Rapid BrdU incorporation was also observed in members of the SAR86 lineage. After 4 h of incubation, cells affiliated with this clade constituted 8% of the total bacteria but almost 50% of the visibly DNA-synthesizing bacterial fraction. Thus, this clade might be an important contributor to total bacterioplankton activity in coastal North Sea water during periods of low phytoplankton primary production. The small size and low ribosome content of SAR86 cells are probably not indications of inactivity or dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号