共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: The II generation method using human recombination thyrotropin receptors for measurement of thyrotropin binding inhibitory immunoglobulins (TBII) is characterized by increased sensitivity and specificity in comparison with I generation method. AIM OF STUDY was to determine, whether TBII levels measured with II generation assay reflect thyroid stimulation and whether measurement of thyroid stimulating antibodies (TSI) could be replaced by TBII determinations. Specific aim was to evaluate, whether correlation between TSI and TBII levels is stable during antithyroid therapy. MATERIAL AND METHODS: 41 patients with the newly diagnosed Graves' disease were included in the study. TSI (cAMP levels in CHO cell line) and TBII (II generation assay) levels were determined before treatment and after 1, 3, 6, 9 and 12 months of thiamazol therapy. Moreover, thyroid blocking antibodies were determined after 12 months of treatment. RESULTS: 32 patients (82.05%) had positive basic TSI level and 35 patients (89.74%) had positive basic TBII level. After 12 months of therapy negative level of TSI was observed in 67.57% of patients and negative level of TBII was founded in 45.85% of patients. Correlation between TSI and TBII levels was positive during treatment course except time after 9 months of therapy. CONCLUSIONS: TBII level is adequate parameter to assess thyroid stimulation intensity. Positive correlation between TSI and TBII levels is present during almost whole treatment course. TBII seems to be reliable parameter in disease activity monitoring and response to therapy. 相似文献
2.
To identify immunogenic regions in human thyrotropin (TSH) receptor for immunoglobulin G (IgG) of patients with Graves' disease, seven different peptides (each consisting of 14-29 residues long) corresponding to segments of the extracellular domain of the receptor were synthesized. Graves' sera and IgG significantly bound to two out of seven peptides (the amino acid sequence of peptide #1, HQEEDFRVTCKDIQRIPSLPPSTQT; that of peptide #5, LRQRKSVNALNSPLHQEYEENLGDSIVGY). The present data indicate the characteristic existence of immunogenic regions in human TSH receptor for IgG of patients with Graves' disease. 相似文献
3.
The thyrotropin receptor is proposed to contain both a glycoprotein and a ganglioside component. Monoclonal antibodies have been developed against soluble thyroid TSH receptor preparations and using Graves' lymphocytes. These show that initial recognition of thyrotropin requires the glycoprotein component, but that monoclonal antibodies to this component block thyrotropin function (blocking antibodies) rather than mimic thyrotropin. Monoclonal antibodies which stimulate thyroid activity in cultured cell systems (cAMP increase) or mouse bioassays, all interact with gangliosides. Using monoclonal antibodies to the glycoprotein component of the thyrotropin receptor, we show that two protein bands, molecular weights 18,000-23,000 and 50,000-55,000, are precipitated from detergent-solubilized preparations. Using a crosslinking procedure with 125I-labeled thyrotropin, we show that thyrotropin binding is related to the disappearance of the 18,000-23,000 molecular weight band on sodium dodecylsulfate gels and the appearance of a 30,000-33,000 molecular weight thyrotropin-membrane component complex. Higher molecular weight thyrotropin-membrane complexes of 75,000-80,000 and 250,000 are visualized when binding studies are performed at pH 7.4 in physiologic medium; larger amounts of the 30,000-33,000 complex are evident at pH 6.0 in a low salt medium. It is thus proposed that the glycoprotein component of the thyrotropin receptor is composed of two subunits with apparent molecular weights of 18,000-23,000 and 50,000-55,000; that the 18,000-23,000 subunit interacts with thyrotropin; and that different receptor subunits can exist depending on in vitro binding conditions. Using monoclonal-stimulating antibodies or natural autoimmune IgG preparations from patients' sera, we show that stimulating antibodies exhibit species-specific binding to human thyroid ganglioside preparations. Individual components or determinants of the thyrotropin receptor structure with specific autoimmune immunoglobulins. 相似文献
4.
E V Nagy H B Burch K Mahoney Y G Lukes J C Morris K D Burman 《Biochemical and biophysical research communications》1992,188(1):28-33
Twenty-nine peptides covering the full extracellular domain of the human thyrotropin receptor have been synthesized and tested for reactivity with Graves' patients' and normal sera in ELISA. Two peptides, amino acids 331-350 and the second extracellular loop of the transmembrane segment, bound IgG-s from 5 and 4 of 10 Graves' disease patients' sera, respectively. Neither of these two peptides showed enhanced binding to normal IgG. There were no apparent differences between the Graves' disease and normal group with respect to the other 27 peptides. We conclude that peptide 331-350 and the second extracellular loop carry important linear epitopes which may contribute to the disease process in selected Graves' patients. 相似文献
5.
K Tahara T Ban T Minegishi L D Kohn 《Biochemical and biophysical research communications》1991,179(1):70-77
To examine the identity of binding sites for thyrotropin (TSH) and thyroid stimulating antibodies (TSAbs) associated with Graves' disease, we constructed eight human TSH receptor/rat LH-CG receptor chimeras. Substitution of amino acid residues 8-165 of the TSH receptor with the corresponding LH-CG receptor segment (Mc1 + 2) results in a chimera which retains high affinity TSH binding and the cAMP response to TSH but loses both the cAMP response to Graves' IgG and Graves' IgG inhibition of TSH binding. Two of three IgGs from idiopathic myxedema patients which contain thyroid stimulation blocking antibodies (TSBAbs) still, however, react with this chimera. Chimeras which substitute residues 90-165 (Mc2) and 261-370 (Mc4) retain the ability to interact with TSH, Graves' IgG, and idiopathic myxedema IgG. The data thus suggest that residues 8-165 contain an epitope specific for TSAbs and that TSH receptor determinants important for the activities of TSAbs and TSH are not identical. Further, binding sites for TSBAbs in idiopathic myxedema may be different from receptor binding sites for both Graves' IgG TSAb as well as TSH and may be different in individual patients. 相似文献
6.
L Bartalena G Fenzi P Vitti D Tombaccini A Antonelli E Macchia L Chiovato L D Kohn A Pinchera 《Biochemical and biophysical research communications》1987,143(1):266-272
FRTL-5 rat thyroid cells were either surface-labeled with 125I or biosynthetically labeled with [3H]N-acetylglucosamine, solubilized by lithium diiodosalicylate and immunoprecipitated after sequential exposure to bovine thyrotropin and anti-bovine thyrotropin. Autoradiography of polyacrylamide gels run under denaturing conditions and in the presence of a reducing agent revealed two prominent bands with approximate molecular weights of 66-70 kDa and 47 kDa. Immunoprecipitation of the same radiolabeled and solubilized membrane preparations with a Graves' disease IgG having thyroid stimulating but no thyrotropin-binding inhibiting activity revealed only one major band, migrating near the 47 kDa component reactive with thyrotropin. No bands were immunoprecipitated in control incubations using normal human IgG or substituting radiolabeled, solubilized membranes from a rat thyroid cell line with no thyrotropin receptor activity. Thin layer chromatography of Folch extracts of the [3H]-N-acetylglucosamine-labeled immunoprecipitates obtained by either procedure indicated that a specific thyroid ganglioside was coprecipitated with the immunoprecipitated proteins in both cases. 相似文献
7.
M Murakami K Miyashita M Yamada T Iriuchijima M Mori 《Biochemical and biophysical research communications》1992,186(2):1074-1080
An antiserum raised against an alignment of amino acid-(32-56), termed TSHRP-1, in the extracellular domain of human thyrotropin (TSH) receptor was used to identify the TSH receptor-like substance in plasma of Graves' disease. The dilution curve of plasma TSHRP-1-like immunoreactivity was observed in a manner parallel to the standard synthetic peptide curve in radioimmunoassay, and its molecular weight estimated approximately 60 kDa. The amounts of TSHRP-1-like immunoreactivity were significantly higher in Graves' plasma than those in plasma of normal and hypothyroid patients due to Hashimoto's thyroiditis. The present results indicate that human peripheral blood possesses a soluble form of the extracellular domain of TSH receptor which may contribute to the pathophysiology of Graves' disease. 相似文献
8.
Thyroid stimulating antibodies (TSAb) and thyrotropin binding inhibiting immunoglobulins (TBII) were measured in 32 patients with Graves' disease who had been in remission for at least two years after treatment was been stopped. Seventeen patients had been treated with antithyroid drugs, and 15 patients with 131Iodine. In the first group 3 of 17 patients had TSAb and one TBII, whereas in the second group 4 of 15 patients had TSAb and two TBII. One patient from each group had inhibiting TSAb. During the follow-up one patient from each group relapsed, whereas 5 patients from the second group developed myxoedema. No relationship between the clinical outcome and TSAb and TBII was found. 相似文献
9.
T Mori H Sugawa T Piraphatdist D Inoue T Enomoto H Imura 《Biochemical and biophysical research communications》1991,178(1):165-172
An 11-residue oligopeptide, P-195, was synthesized to match human thyrotropin (TSH) receptor structure from No. 333 to 343 of amino acid sequence. Preincubation of 5 Graves' IgGs with P-195 up to 10 micrograms resulted in dose-dependent reductions of thyroid stimulating antibody (TSAb) activity. [125I] labeled P-195 was found to bind Graves' IgG. The bound radioactivity correlated significantly with their TSAb activity (N = 25, r = 0.587, p less than 0.01). A peptide having a completely reverse sequence as P-195 did not show such biological activity. The peptide did not affect TSH and thyrotropin binding inhibitor immunoglobulin (TBII) on their receptor binding nor biological activities. P-195 was concluded to have a part of TSAb binding sites. 相似文献
10.
M Horimoto M Nishikawa C Uno N Yoshikawa N Taniguchi M Inada 《Endocrinologia japonica》1988,35(6):841-848
To investigate the relationship between TSH and abnormal thyroid stimulator(s) in patients with hyperthyroid Graves' disease in whom normal thyroid hormone levels in the serum were maintained by antithyroid drug therapy and in patients with euthyroid Graves' disease, determinations were made of the TSH concentration, action of thyroid stimulating immunoglobulins (TSAb and TBII), and T3 suppression. Out of thirty-three patients with hyperthyroid Graves' disease, twelve patients with subnormal TSH levels were all non-suppressible according to the T3 suppression test results and the detectability of TSAb and/or TBII was as high as 75%. In three out of five patients with euthyroid Graves' disease, the serum TSH level was subnormal. All three showed non-suppressibility in the T3 suppression test and positive action of either TSAb or TBII. One of them became clinically thyrotoxic when the TSAb activity was further increased and TBII became positive, and was therefore diagnosed as having hyperthyroid Graves' disease. The present findings suggest that there are still abnormal thyroid stimulator(s) in patients with hyperthyroid Graves' disease who have low TSH, even if their thyroid hormone concentrations remain normal. Moreover, it is likely that some of the patients with euthyroid Graves' disease are actually in a state of subclinical hyperthyroidism because of the presence of abnormal thyroid stimulator(s). 相似文献
11.
B Quadbeck R Hoermann S Hahn U Roggenbuck K Mann O E Janssen 《Hormones et métabolisme》2005,37(12):745-750
TSH-receptor autoantibodies (TRAbs) are a valuable diagnostic tool for confirming a diagnosis of Graves' disease (GD). While there is evidence that high TRAb levels are associated with relapse of GD, whether a discrimination of TRAb into stimulating (TSAb) and blocking (TBAb) autoantibodies would benefit the clinician in terms of outcome prediction remains unclear. To address this issue, we have determined TRAb, TSAb and TBAb levels in serum samples of ninety-six euthyroid patients with GD taken four weeks after antithyroid drug withdrawal (ATDT). Forty-seven patients (49 %) underwent relapse of GD within two years. Amongst those, forty-one (87 %) had been positive for TRAb and thirty-five (74 %) for TSAb after treatment. All patients except one were negative for TBAb. The correlation between TRAb and TSAb in those treated GD patients was relatively weak (r = 0.268, p < 0.001). Based on a cut-off limit of 1.5 IU/l, the positive and negative predictive values with respect to prediction of relapse were too low for any clinical relevance (TRAb: 49 % and 54 %; TSAb: 51 % and 55 %). However, when a cut-off level above 10 IU/l was used, the positive and negative predictive values increased to 83 % and 62 %. The additional measurement of TSAb or TBAb in those samples after therapy did not add additional information, even at higher decision thresholds. In conclusion, differentiation of TRAb into TSAb and TBAb is of no help in the prediction of relapse of GD in euthyroid patients at the end of ATDT, and only high TRAb levels are associated with relapse. 相似文献
12.
A bioassay for thyroid stimulating immunoglobulins (TSI) of patients with Graves' disease was developed by porcine thyroid monolayer cells. Thyroid cells were prepared by dispersion using collagenase and trypsin. Aliquots of the cell suspension (2 X 10(6) cells/1.5 ml/dish) in Ham's F-12 medium (pH 7.2) containing 10% calf serum and 1.5 mM Hepes were seeded and cultured in air at 36 C. On day 6 of culture, cells were incubated with test samples (IgG or bTSH) in 1 ml of serum-free, 0.5 mM IMX-included fresh medium for an additional time, and cAMP in the cells was measured by radioimmunoassay. Intracellular cAMP was increased within 5 minutes after the addition of bTSH and the maximal increase was observed after 30 min. Responses of cAMP were in a dose-related manner up to 10 mU/ml of bTSH. With the addition of IgG from untreated Graves' patients, dose-related increases in cAMP were also observed up to 10 mg/ml IgG and the maximal response was seen at 2 hours incubation. Thyroid stimulating activity in IgG's from normal subjects and patients with Graves' disease was tested with a dose of 10 mg/ml and 2 hours incubation and the activity was expressed as a percent of the control (incubated in the same experiment without IgG). One hundred forty one of 145 untreated patients showed higher activity (228 +/- 51.8%, mean +/- SD; 127-393%, range) than normal subjects (103 +/- 13.3%, mean +/- SD, n = 24; 80-129%, range). Sequential changes in TSI activity in 27 patients after initiating thionamide drugs were studied for 24 months. Initially all 27 patients showed positive TSI and 6 months later 15 remained positive. At 6 months after that, 10 of 23, 4 of 16, and 2 of 6 followed patients showed positive TSI. These results indicate that this bioassay is clinically useful for detecting TSI. 相似文献
13.
Inhibition of thyrotropin binding to receptor by synthetic human thyrotropin beta peptides 总被引:1,自引:0,他引:1
In order to study the structure and function relationships of the thyrotropin (TSH)-specific beta-subunit, we produced 11 synthetic overlapping peptides containing the entire 112-amino acid sequence of human beta TSH and tested them for activity in TSH radioreceptor assay using both human and porcine thyroid membranes. Synthetic peptides representing four regions of the beta-subunit demonstrated the ability to inhibit binding of 125I-bovine TSH to crude thyroid membranes. The peptide representing the -COOH terminus of the subunit (beta 101-112) possessed highest binding activity, inhibiting binding of labeled TSH with an EC50 of 80 microM. The remaining active peptides were: beta 71-85 (104 microM), beta 31-45 (186 microM), beta 41-55 (242 microM), and beta 1-15 (331 microM). Specificity of the binding activity was shown by the inability of the peptides representing the remainder of the subunit to inhibit binding of label and by the inability of any of the peptides to inhibit binding of 125I-epidermal growth factor to the same thyroid membranes. The low affinity of the peptides as compared with native hormone is in agreement with previous studies of synthetic alpha-subunit peptides and, further, suggests that the interaction of beta TSH with receptor is multifaceted, requiring cooperative binding of these sites for the observed high affinity of the whole hormone. These studies are in agreement with previous predictions of active regions by chemical modification but add two regions to the list, showing the utility of the synthetic peptide strategy in the study of peptide hormone structure-activity relationships. 相似文献
14.
Douglas RS Naik V Hwang CJ Afifiyan NF Gianoukakis AG Sand D Kamat S Smith TJ 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(8):5768-5774
Graves' disease (GD) is an autoimmune process involving the thyroid and connective tissues in the orbit and pretibial skin. Activating anti-thyrotropin receptor Abs are responsible for hyperthyroidism in GD. However, neither these autoAbs nor the receptor they are directed against have been convincingly implicated in the connective tissue manifestations. Insulin-like growth factor-1 receptor (IGF-1R)-bearing fibroblasts overpopulate connective tissues in GD and when ligated with IgGs from these patients, express the T cell chemoattractants, IL-16, and RANTES. Disproportionately large fractions of peripheral blood T cells also express IGF-1R in patients with GD and may account, at least in part, for expansion of IGF-1R(+) memory T cells. We now report a similarly skewed B cell population exhibiting the IGF-1R(+) phenotype from the blood, orbit, and bone marrow of patients with GD. This expression profile exhibits durability in culture and is maintained or increased with CpG activation. Moreover, IGF-1R(+) B cells produce pathogenic Abs against the thyrotropin receptor. In lymphocytes from patients with GD, IGF-1 enhanced IgG production (p < 0.05) and increased B cell expansion (p < 0.02) in vitro while those from control donors failed to respond. These findings suggest a potentially important role for IGF-1R display by B lymphocytes in patients with GD in supporting their expansion and abnormal Ig production. 相似文献
15.
T Endo M Ikeda M Ohmori E Anzai K Haraguchi T Onaya 《Biochemical and biophysical research communications》1992,187(2):887-893
We have produced rabbit antibody against a synthetic peptide corresponding to N-terminal region of the extracellular domain of human thyrotropin receptor (hTSH-R) (N peptide, aminoacid residues 29-57). Western blot analysis revealed that N-peptide antibody recognized recombinant hTSH-R stably expressing in CHO-K1 cells as a mol. wt. about 104 kDa regardless in the presence or absence of disulfide-reducing agent. The band was not detected in untransfected CHO-K1 cells and no band was also stained by the antibody absorbed with N-peptide. In a reducing condition, the antibody also bound the rat receptor from FRTL5 cells as the same molecular size (104 kDa). These results clearly indicate that TSH-R is composed of a single subunit and that two subunit model for the TSH-R may reflect artifactual proteolytic cleavage of the receptor during membrane preparation. 相似文献
16.
Y Nakajima Y Kajita M Ishida Y Ura Y Ochi T Hachiya H Hidaka 《Endocrinologia japonica》1987,34(4):513-520
We detected an antibody to calmodulin (CaM) in sera from patients with Graves' disease. Four sera out of 300 from patients with Graves' disease demonstrated increased CaM binding activity as compared with 300 sera from normal subjects, while no binding activity was detected in sera from autoimmune thyroiditis. The binding could be demonstrated as due to the antibody to CaM by the double antibody method, polyethyleneglycol method, gel filtration and radioimmunoelectrophoresis, respectively. These antibodies were thought to be polyclonal immunoglobulins (IgG and/or IgA). CaM has proven to be a poor antigen because of the structural identity of CaM from different species. The incidence of the antibody to CaM in Graves' disease is low and the pathophysiological significance of this antibody to CaM had remains obscure. 相似文献
17.
Levels of autoantibodies against human TSH receptor predict relapse of hyperthyroidism in Graves' disease. 总被引:4,自引:0,他引:4
M Schott N G Morgenthaler R Fritzen J Feldkamp H S Willenberg W A Scherbaum J Seissler 《Hormones et métabolisme》2004,36(2):92-96
The aim of this study was to evaluate the ability of the more sensitive second-generation TSH receptor (TRAb) assay to predict recurrent Graves' disease (GD) vs. remission depending on TRAb levels. 93 patients with active GD were included in the study. By using a cut-off limit of 1.0 IU/l, all 93 patients were positive for TRAb (median: 4.6 IU/l) at the time of their first visit (single point measurement in median 5.1 months after initial diagnosis). Subsequently, 33 patients went into remission and were euthyroid during follow-up (median follow-up: 21.7 months), whereas 60 patients did not go into remission or developed relapse over the following 24 months. Median TRAb levels in the group of remission were significantly (p < 0.0001) lower than TRAb values in the relapse group (2.1 compared to 8.6 IU/l). Applying ROC plot analysis to compare different TRAb thresholds, a cut-off of 10 IU/l was established. Here, the specificity for relapse was 97 % as only 1 of 29 patients with TRAb values above 10 IU/l went into remission during follow-up, whereas all other 28 patients developed a relapse (positive predictive value for relapse: 96.4 %). In contrast, TRAb values lower than 10 IU/l had no impact on the prediction of remission. In conclusion, our data clearly indicate that TRAb measurement is useful for identifying patients that will not benefit from long-term antithyroid drug treatment. 相似文献
18.
A novel murine model of Graves' hyperthyroidism with intramuscular injection of adenovirus expressing the thyrotropin receptor 总被引:13,自引:0,他引:13
Nagayama Y Kita-Furuyama M Ando T Nakao K Mizuguchi H Hayakawa T Eguchi K Niwa M 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(6):2789-2794
In this work we report a novel method to efficiently induce a murine model of Graves' hyperthyroidism. Inbred mice of different strains were immunized by i.m. injection with adenovirus expressing thyrotropin receptor (TSHR) or beta-galactosidase (1 x 10(11) particles/mouse, three times at 3-wk intervals) and followed up to 8 wk after the third immunization. Fifty-five percent of female and 33% of male BALB/c (H-2(d)) and 25% of female C57BL/6 (H-2(b)) mice developed Graves'-like hyperthyroidism with elevated serum thyroxine (T(4)) levels and positive anti-TSHR autoantibodies with thyroid-stimulating Ig (TSI) and TSH-binding inhibiting Ig (TBII) activities. In contrast, none of female CBA/J (H-2(k)), DBA/1J (H-2(q)), or SJL/J (H-2(s)) mice developed Graves' hyperthyroidism or anti-TSHR autoantibodies except SJL/J, which showed strong TBII activities. There was a significant positive correlation between TSI values and T(4) levels, but the correlations between T(4) and TBII and between TSI and TBII were very weak. TSI activities in sera from hyperthyroid mice measured with some chimeric TSH/lutropin receptors suggested that their epitope(s) on TSHR appeared similar to those in patients with Graves' disease. The thyroid glands from hyperthyroid mice displayed diffuse enlargement with hypertrophy and hypercellularity of follicular epithelia with occasional protrusion into the follicular lumen, characteristics of Graves' hyperthyroidism. Decreased amounts of colloid were also observed. However, there was no inflammatory cell infiltration. Furthermore, extraocular muscles from hyperthyroid mice were normal. Thus, the highly efficient means that we now report to induce Graves' hyperthyroidism in mice will be very useful for studying the pathogenesis of autoimmunity in Graves' disease. 相似文献
19.
T Endo K Haraguchi M Ohmori M Ikeda K Ohta T Onaya 《Biochemical and biophysical research communications》1991,179(3):1543-1547
There exists a consensus that hyperthyroid Graves' disease is caused by thyrotropin receptor (TSH-R) autoantibodies. To test the possibility that the TSH-R is the sole antigen for thyroid stimulating antibodies (TSAb), we compared bioactivities of Graves' IgGs between non-thyroid mammalian cells transfected with human TSH-R cDNA and the reference thyroid bioassay. A Graves' IgG with TSH-binding inhibitor immunoglobulin (TBII) activity (89%) markedly stimulated cAMP formation in both CHO-K1 cells transfected with TSH-R cDNA (340 microU/ml of TSH equivalent) and rat thyroid cells, FRTL-5, (410 microU/ml of TSH equivalent). In contrast, a TBII negative (-1.5%) IgG from another patient with Graves' disease showed a strong thyroid stimulating activity (87 microU/ml of TSH equivalent) when FRTL-5 cells were used for the assay. But no stimulating activity was observed in this IgG when CHO-K1 cells transfected with TSH-R cDNA were used, suggesting a possible existence of TSH-R non-mediated thyroid stimulating immunoglobulin in some cases of Graves' disease. 相似文献
20.
Heterogeneous human NK cell responses to Plasmodium falciparum-infected erythrocytes 总被引:2,自引:0,他引:2
Korbel DS Newman KC Almeida CR Davis DM Riley EM 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(11):7466-7473
Human NK cells can respond rapidly to Plasmodium falciparum-infected RBC (iRBC) to produce IFN-gamma. In this study, we have examined the heterogeneity of this response among malaria-naive blood donors. Cells from all donors become partially activated (up-regulating CD69, perforin, and granzyme) upon exposure to iRBC but cells from only a subset of donors become fully activated (additionally up-regulating CD25, IFN-gamma, and surface expression of lysosomal-associated membrane protein 1 (LAMP-1)). Although both CD56dim and CD56bright NK cell populations can express IFN-gamma in response to iRBC, CD25 and LAMP-1 are up-regulated only by CD56dim NK cells and CD69 is up-regulated to a greater extent in this subset; by contrast, perforin and granzyme A are preferentially up-regulated by CD56bright NK cells. NK cells expressing IFN-gamma in response to iRBC always coexpress CD69 and CD25 but rarely LAMP-1, suggesting that individual NK cells respond to iRBC either by IFN-gamma production or cytotoxicity. Furthermore, physical contact with iRBC can, in a proportion of donors, lead to NK cell cytoskeletal reorganization suggestive of functional interactions between the cells. These observations imply that individuals may vary in their ability to mount an innate immune response to malaria infection with obvious implications for disease resistance or susceptibility. 相似文献