首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thiamin and biotin biosynthetic pathways utilize elaborate strategies for the transfer of sulfur from cysteine to cofactor precursors. For thiamin, the sulfur atom of cysteine is transferred to a 66-amino-acid peptide (ThiS) to form a carboxy-terminal thiocarboxylate group. This sulfur transfer requires three enzymes and proceeds via a ThiS-acyladenylate intermediate. The biotin synthase Fe-S cluster functions as the immediate sulfur donor for biotin formation. C-S bond formation proceeds via radical intermediates that are generated by hydrogen atom transfer from dethiobiotin to the adenosyl radical. This radical is formed by the reductive cleavage of S-adenosylmethionine by the reduced Fe-S cluster of biotin synthase.  相似文献   

2.
Cholesterol biosynthesis occurs in the endoplasmic reticulum (ER). Its lego-like construction from water-soluble small metabolites via intermediates of increasing complexity to water-insoluble cholesterol requires numerous distinct enzymes. Dysfunction of the involved enzymes can cause several human inborn defects and diseases. Here, we review recent structures of three key cholesterol biosynthetic enzymes: Squalene epoxidase (SQLE), NAD(P)-dependent steroid dehydrogenase-like (NSDHL), and 3β-hydroxysteroid Δ87 isomerase termed EBP. Moreover, we discuss structures of acyl-CoA:cholesterol acyltransferase (ACAT) enzymes, which are responsible for forming cholesteryl esters from cholesterol to maintain cholesterol homeostasis in the ER. The structures of these enzymes reveal their catalytic mechanism and provide a molecular basis to develop drugs for treating diseases linked to their dysregulation.  相似文献   

3.
Combinatorial biosynthesis involves the genetic manipulation of natural product biosynthetic enzymes to produce potential new drug candidates that would otherwise be difficult to obtain. In either a theoretical or practical sense, the number of combinations possible from different types of natural product pathways ranges widely. Enzymes that have been the most amenable to this technology synthesize the polyketides, nonribosomal peptides, and hybrids of the two. The number of polyketide or peptide natural products theoretically possible is huge, but considerable work remains before these large numbers can be realized. Nevertheless, many analogs have been created by this technology, providing useful structure-activity relationship data and leading to a few compounds that may reach the clinic in the next few years. In this review the focus is on recent advances in our understanding of how different enzymes for natural product biosynthesis can be used successfully in this technology.  相似文献   

4.
The antibiotic amiclenomycin blocks the biosynthesis of biotin by inhibiting the pyridoxal-phosphate-dependent enzyme diaminopelargonic acid synthase. Inactivation of the enzyme is stereoselective, i.e. the cis isomer of amiclenomycin is a potent inhibitor, whereas the trans isomer is much less reactive. The crystal structure of the complex of the holoenzyme and amiclenomycin at 1.8 A resolution reveals that the internal aldimine linkage between the cofactor and the side chain of the catalytic residue Lys-274 is broken. Instead, a covalent bond is formed between the 4-amino nitrogen of amiclenomycin and the C4' carbon atom of pyridoxal-phosphate. The electron density for the bound inhibitor suggests that aromatization of the cyclohexadiene ring has occurred upon formation of the covalent adduct. This process could be initiated by proton abstraction at the C4 carbon atom of the cyclohexadiene ring, possibly by the proximal side chain of Lys-274, leading to the tautomer Schiff base followed by the removal of the second allylic hydrogen. The carboxyl tail of the amiclenomycin moiety forms a salt link to the conserved residue Arg-391 in the substrate-binding site. Modeling suggests steric hindrance at the active site as the determinant of the weak inhibiting potency of the trans isomer.  相似文献   

5.
6.
Structural insights into sialic acid enzymology   总被引:1,自引:0,他引:1  
Sialic acids are a diverse family of negatively charged sugars that play essential biological roles. Their presence and relative abundance in different cells is ultimately regulated by the concerted action of a large set of enzymes. In this review, we focus on the most recent advances on the enzymes that govern sialic acid metabolism, with emphasis on structural work. Major progress has been made in dissecting the catalytic mechanism of sialidases, revealing a modified scenario of the typical glycosidase ping-pong mechanism. Similarly, X-ray structures of sialyltransferases uncover significant variations of formerly known glycosyltransferase foldings. Both sialidases and sialyltransferases seem to tell us that sialic acid-handling enzymes have evolved important modifications related to the distinctive features of sialic acid itself.  相似文献   

7.
A strain of Escherichia coli in which the lacZ gene was fused to the bioA promoter was constructed. Colonies of this strain formed Lac(+) colonies on low-biotin agar (1.6 to 4.1 nM) and Lac(-) colonies on high-biotin agar (41 nM). This lac-bio fusion strain was used to study the question of whether cells growing on the biotin vitamers d-biotin-d-sulfoxide (BDS) and dethiobiotin (DTB) generate enough biotin to give maximal repression of beta-galactosidase synthesis. Repression by high concentrations (400 nM) of BDS was almost maximal (about 96%), whereas DTB repression reached a saturation level of about 80% with increasing DTB concentrations. The levels of repression obtained with both vitamers were sufficient to cause the colonies to appear Lac(-). When the lac-bio fusion was transduced into lines carrying mutations (bis) that prevent reduction of BDS to biotin, the transductants were not repressed by added BDS. Repression by BDS is unlikely to result from accumulation of extracellular biotin-related substances because (i) washed bis(+) cells were not detectably derepressed when transferred into medium containing BDS and (ii) washed bis cells were not detectably repressed when transferred into medium in which bis(+) cells had grown. Lactose agar plates containing high concentrations of DTB or BDS comprise an efficient selective medium for bioB or bis mutants and were used to isolate spontaneous mutations of these genes. This method should be adaptable to the selection of mutations in any biosynthetic pathway subject to end-product repression.  相似文献   

8.
9.
An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia coli biotin-biosynthesis pathway in S. cerevisiae. Implementation of this pathway required expression of seven E. coli genes involved in fatty-acid synthesis and three E. coli genes essential for the formation of a pimelate thioester, key precursor of biotin synthesis. A yeast strain expressing these genes readily grew in biotin-free medium, irrespective of the presence of oxygen. However, the engineered strain exhibited specific growth rates 25% lower in biotin-free media than in biotin-supplemented media. Following adaptive laboratory evolution in anoxic cultures, evolved cell lines that no longer showed this growth difference in controlled bioreactors, were characterized by genome sequencing and proteome analyses. The evolved isolates exhibited a whole-genome duplication accompanied with an alteration in the relative gene dosages of biosynthetic pathway genes. These alterations resulted in a reduced abundance of the enzymes catalyzing the first three steps of the E. coli biotin pathway. The evolved pathway configuration was reverse engineered in the diploid industrial S. cerevisiae strain Ethanol Red. The resulting strain grew at nearly the same rate in biotin-supplemented and biotin-free media non-controlled batches performed in an anaerobic chamber. This study established an unique genetic engineering strategy to enable biotin-independent anoxic growth of S. cerevisiae and demonstrated its portability in industrial strain backgrounds.  相似文献   

10.
Closing in on complete pathways of biotin biosynthesis   总被引:1,自引:0,他引:1  
Biotin is an enzyme cofactor indispensable to metabolic fixation of carbon dioxide in all three domains of life. Although the catalytic and physiological roles of biotin have been well characterized, the biosynthesis of biotin remains to be fully elucidated. Studies in microbes suggest a two-stage biosynthetic pathway in which a pimelate moiety is synthesized and used to begin assembly of the biotin bicyclic ring structure. The enzymes involved in the bicyclic ring assembly have been studied extensively. In contrast the synthesis of pimelate, a seven carbon α,ω-dicarboxylate, has long been an enigma. Support for two different routes of pimelate synthesis has recently been obtained in Escherichia coli and Bacillus subtilis. The E. coli BioC-BioH pathway employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes whereas the B. subtilis BioI-BioW pathway utilizes oxidative cleavage of fatty acyl chains. Both pathways produce the pimelate thioester precursor essential for the first step in assembly of the fused rings of biotin. The enzymatic mechanisms and biochemical strategies of these pimelate synthesis models will be discussed in this review.  相似文献   

11.
12.
We gathered primary and tertiary structures of acyl-CoA carboxylases from public databases, and established that members of their biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains occur in one family each and that members of their carboxyl transferase (CT) domains occur in two families. Protein families have members similar in primary and tertiary structure that probably have descended from the same protein ancestor. The BCCP domains complexed with biotin in acyl and acyl-CoA carboxylases transfer bicarbonate ions from BC domains to CT domains, enabling the latter to carboxylate acyl and acyl-CoA moieties. We separated the BCCP domains into four subfamilies based on more subtle primary structure differences. Members of different BCCP subfamilies often are produced by different types of organisms and are associated with different carboxylases.  相似文献   

13.
1. Filtrates from cultures of a strain of Pseudomonas aeruginosa, grown in a basal glucose-ammonium chloride-vitamins-salts medium, possessed biotin activity as detected by microbiological assays. Exponential-phase culture filtrates contained biotin and desthiobiotin in the approximate ratio 1:3, with smaller amounts of biotin sulphoxide and three unidentified compounds with biotin activity. 2. The addition of malonate, adipate or pimelate to the basal medium stimulated the production of compounds with biotin activity; this effect was enhanced when these compounds were included in the medium as the major carbon source. Succinate, glutarate, suberate, fumarate or oxaloacetate did not stimulate the production of compounds with biotin activity. The ratio of biotin to desthiobiotin in filtrates from cultures grown in medium containing malonate as the carbon source was about 1:1. Experiments in which mixtures of malonate and pimelate were included in the medium as the carbon sources showed that these acids probably make a similar contribution in biotin biosynthesis. 3. A number of heterocyclic compounds, including several containing the ureido group (-NH-CO-NH-), were included in the basal medium but none of them stimulated the production of compounds with biotin activity to any marked degree. 4. Several amino acids, particularly cysteine (or cystine) and lysine, when added individually as supplements to the basal medium, stimulated the production of compounds with biotin activity. Filtrates from cultures grown in medium supplemented with cysteine contained approximately equal proportions of biotin and desthiobiotin. A much greater stimulation in the production of compounds with biotin activity was obtained when certain amino acids were included in the medium as the major source of nitrogen or carbon and nitrogen; ornithine, citrulline and argininosuccinate had the most marked effect. The ratio of biotin to desthiobiotin in filtrates from these cultures was usually greater than in filtrates from cultures grown in basal medium. 5-Aminovalerate also caused some stimulation when used as the nitrogen source, but urea was inactive. The effect of binary mixtures of certain amino acids was also examined. 5. The results are discussed in relation to the possible role of the stimulatory compounds during biotin biosynthesis.  相似文献   

14.
15.
16.
Genetics and assembly line enzymology of siderophore biosynthesis in bacteria.   总被引:11,自引:0,他引:11  
The regulatory logic of siderophore biosynthetic genes in bacteria involves the universal repressor Fur, which acts together with iron as a negative regulator. However in other bacteria, in addition to the Fur-mediated mechanism of regulation, there is a concurrent positive regulation of iron transport and siderophore biosynthetic genes that occurs under conditions of iron deprivation. Despite these regulatory differences the mechanisms of siderophore biosynthesis follow the same fundamental enzymatic logic, which involves a series of elongating acyl-S-enzyme intermediates on multimodular protein assembly lines: nonribosomal peptide synthetases (NRPS). A substantial variety of siderophore structures are produced from similar NRPS assembly lines, and variation can come in the choice of the phenolic acid selected as the N-cap, the tailoring of amino acid residues during chain elongation, the mode of chain termination, and the nature of the capturing nucleophile of the siderophore acyl chain being released. Of course the specific parts that get assembled in a given bacterium may reflect a combination of the inventory of biosynthetic and tailoring gene clusters available. This modular assembly logic can account for all known siderophores. The ability to mix and match domains within modules and to swap modules themselves is likely to be an ongoing process in combinatorial biosynthesis. NRPS evolution will try out new combinations of chain initiation, elongation and tailoring, and termination steps, possibly by genetic exchange with other microorganisms and/or within the same bacterium, to create new variants of iron-chelating siderophores that can fit a particular niche for the producer bacterium.  相似文献   

17.
18.
Chlorophyll(Chl)-c pigments in algae, diatoms and some prokaryotes are characterized by the fully conjugated porphyrin π-system as well as the acrylate residue at the 17-position. The precise structural characterization of Chl-c(3) from the haptophyte Emiliania huxleyi was performed. The conformations of the π-conjugated peripheral substituents, the 3-/8-vinyl, 7-methoxycarbonyl and 17-acrylate moieties were evaluated, in a solution, using nuclear Overhauser enhancement correlations and molecular modeling calculations. The rotation of the 17-acrylate residue was considerably restricted, whereas the other three substituents readily rotated at ambient temperature. Moreover, the stereochemistry at the 132-position was determined by combination of chiral high-performance liquid chromatography (HPLC) with circular dichroism (CD) spectroscopy. Compared with the CD spectra of the structurally related, synthetic (132R)- and (132S)-protochlorophyllide(PChlide)-a, naturally occurring Chl-c? had exclusively the (132R)-configuration. To elucidate this natural selection of a single enantiomer, we analyzed the three major Chl-c pigments (Chl-c?, c? and c?) in four phylogenetically distinct classes of Chl-c containing algae, i.e., heterokontophyta, dinophyta, cryptophyta and haptophyta using chiral HPLC. All the photosynthetic organisms contained only the (132R)-enantiomerically pure Chls-c, and lacked the corresponding enantiomeric (132S)-forms. Additionally, Chl-c? was found in all the organisms as the common Chl-c. These results throw a light on the biosynthesis as well as photosynthetic function of Chl-c pigments: Chl-c? is derived from 8-vinyl-PChlide-a by dehydrogenation of the 17-propionate to acrylate residues as generally proposed, and the (132R)-enantiomers of Chls-c function as photosynthetically active, light-harvesting pigments together with the principal Chl-a and carotenoids.  相似文献   

19.
1. Yeast cells grown in the presence of an unknown radioactive biotin vitamer produced by Penicillium chrysogenum incorporated the vitamer into the newly synthesized biotin. 2. The biotin was isolated as the avidin–biotin complex and after hydrolysis the biological activity and radioactivity were shown to be coincidental. 3. The specific activity of the biotin was identical with that of the pimelic acid used in a previous investigation to label the unknown vitamer. 4. The role of the unknown biotin vitamer as an intermediate in biotin biosynthesis is discussed.  相似文献   

20.
[3-14C, 35S]-L-cysteine was tested as precursor of biotin in Achromobacter IVSW. No significant incorporation was observed, in contradiction with the data previously reported. On the other hand, Achromobacter IVSW converts [3H, 14C]-dethiobiotin into biotin. This suggests that biotin is biosynthesized in Achromobacter according to the classical dethiobiotin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号