首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification of membrane polypeptides of rat liver peroxisomes   总被引:7,自引:0,他引:7  
Peroxisomes were obtained by sucrose density gradient centrifugation from the livers of di(2-ethylhexyl)phthalate-fed rats, and the membranes were prepared by carbonate extraction (Fujiki, Y., Fowler, S., Shio, H., Hubbard, A.L., & Lazarow, P.B. (1982) J. Cell Biol. 93, 103-110). The integrated membrane polypeptides were solubilized with sodium dodecyl sulfate, and purified by repeated polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Separation of 70 and 68 kDa polypeptides was not attempted in the present study because of their close migration in polyacrylamide gel electrophoresis. Other polypeptides with apparent molecular masses of 41, 27, 26, and 22 kDa were purified to near homogeneity. Antibodies were raised against these purified preparations. The 68 kDa polypeptide is suggested to be produced by the proteolytic modification of 70 kDa polypeptide, since the former increased concomitantly with decrease of the latter when the liver homogenate was incubated, and this change was prevented in the presence of leupeptin during the incubation. The 41 kDa polypeptide was a minor component. The 70 and 68 kDa polypeptides and 41 kDa polypeptide and their antibodies were cross-reactive, but the relation of these polypeptides was not clear. The 27 and 26 kDa polypeptides seemed to be another species of membrane polypeptides, although the relationship of these two polypeptides remains to be clarified. The 22 kDa polypeptide is not related to other membrane polypeptides. The results of immunoblot analysis of subcellular fractions of the liver and an electron microscopic immunocytochemical study to locate the antigenic sites with protein A-gold complex suggest that all of these polypeptides are localized on peroxisomal membranes. On proliferation of rat liver peroxisomes by administration of di(2-ethylhexyl)phthalate, a peroxisome proliferator, all of these polypeptides were markedly increased.  相似文献   

2.
We have characterized the integral membrane polypeptides of liver peroxisomes from untreated rats and rats treated with clofibrate, a peroxisome proliferator. Membranes, prepared by treatment of purified peroxisomes with sodium carbonate, were used to raise an antiserum in rabbits. Immunoblot analysis demonstrated the reaction of this antiserum with six peroxisomal integral membrane polypeptides (molecular masses, 140, 69, 50, 36, 22, and 15 kDa). Treatment of rats with the hypolipidemic drug clofibrate caused a 4- to 10-fold induction in the 69-kDa integral membrane polypeptide, while the other integral membrane polypeptides remained unchanged or varied to a lesser extent. The anti-peroxisomal membrane serum reacted with two integral membrane polypeptides of the endoplasmic reticulum which co-migrated with the 50- and 36-kDa integral membrane polypeptides of the peroxisome. Biochemical and immunoblot analyses indicated that these integral membrane polypeptides were co-localized to peroxisomes and endoplasmic reticulum. Immunoprecipitation of in vitro translation products of RNA isolated from free and membrane-bound polysomes indicated that the 22-, 36-, and 69-kDa integral membrane polypeptides were synthesized on free polysomes, while the 50-kDa integral membrane polypeptide was predominantly synthesized on membrane-bound polysomes. The predominant synthesis of the 50-kDa integral membrane polypeptide on membrane-bound polysomes raises interesting possibilities concerning its biosynthesis.  相似文献   

3.
We examined the distribution of peroxisome-specific membrane polypeptides (PMPs) among peroxisomes of the liver, renal cortex, and jejunal mucosa, using antibodies for 70 KD, 26 KD and 22 KD PMPs. Immunoblot analysis showed signals for 70 KD polypeptide in all three kinds of tissue, but for the other two only in the liver and renal cortex, with neither being detected in jejunal mucosa. The total amounts of PMPs increased in all three organs with DEHP (di-(2-ethylhexyl)phthalate) administration. By immunoelectron microscopic analysis using protein A-gold, the three PMPs were localized along the peroxisomal membrane. Quantitation of the gold particles associated with the peroxisomal membrane showed an increase in the density of 70 KD and 26 KD PMPs but a decrease in 22 KD PMP with the administration of DEHP. The presence of tissue-specific localizations of PMPs suggest the 70 KD PMP is a common constituent of peroxisomes of these three tissues, whereas 26 KD and 22 KD PMPs are absent in microperoxisomes of jejunal mucosal epithelium.  相似文献   

4.
In rat liver, peroxisome proliferators induce profound changes in the number and protein composition of peroxisomes, which upon subcellular fractionation is reflected in heterogeneity in sedimentation properties of peroxisome populations. In this study we have investigated the time course of induction of the peroxisomal proteins catalase, acyl-CoA oxidase (ACO) and the 70 kDa peroxisomal membrane protein (PMP70) in different subcellular fractions. Rats were fed a di(2-ethylhexyl)phthalate (DEHP) containing diet for 8 days and livers were removed at different time-points, fractionated by differential centrifugation into nuclear, heavy and light mitochondrial, microsomal and soluble fractions, and organelle marker enzymes were measured. Catalase was enriched mainly in the light mitochondrial and soluble fractions, while ACO was enriched in the nuclear fraction (about 30%) and in the soluble fraction. PMP70 was found in all fractions except the soluble fraction. DEHP treatment induced ACO, catalase and PMP70 activity and immunoreactive protein, but the time course and extent of induction was markedly different in the various subcellular fractions. All three proteins were induced more rapidly in the nuclear fraction than in the light mitochondrial or microsomal fractions, with catalase and PMP70 being maximally induced in the nuclear fraction already at 2 days of treatment. Refeeding a normal diet quickly normalized most parameters. These results suggest that induction of a heavy peroxisomal compartment is an early event and that induction of 'small peroxisomes', containing PMP70 and ACO, is a late event. These data are compatible with a model where peroxisomes initially proliferate by growth of a heavy, possibly reticular-like, structure rather than formation of peroxisomes by division of pre-existing organelles into small peroxisomes that subsequently grow. The various peroxisome populations that can be separated by subcellular fractionation may represent peroxisomes at different stages of biogenesis.  相似文献   

5.
Rats were treated with clofibrate, a hypolipidemic drug, and with thyroxine. Both drugs which are known to cause peroxisome proliferation, and a concomitant increase in peroxisomal fatty acid beta-oxidation activity in liver increased one of the major integral peroxisomal membrane polypeptides (PMPs), with apparent molecular mass of 69-kDa, six- and twofold, respectively. On the other hand hypothyroidism caused a decrease in peroxisomal fatty acid beta-oxidation activity and considerably lowered the concentration of PMP 69 in the peroxisomal membrane. Two other PMPs with apparent molecular masses of 36 and 22 kDa were not influenced by these treatments. The PMPs with apparent molecular masses of 42, 28, and 26 kDa were shown to be derived from the 69-kDa polypeptide by the activity of a yet uncharacterized endogenous protease during isolation of peroxisomes. Limited proteolysis of intact peroxisomes using proteinase K and subtilisin further substantiated that some portion of the 69-kDa polypeptide extends into the cytoplasm. The 36- and the 22-kDa polypeptides were accessible to proteolytic attack to a much lower extent and, therefore, are supposed to be rather deeply embedded within the peroxisomal membrane. It is demonstrated that peroxisomal acyl-CoA synthetase, an integral PMP extending partially into the cytoplasm, and PMP 69 are not identical polypeptides. Comparison of the peroxisomal membrane with that of mitochondria and microsomes revealed that the 69- and 22-kDa polypeptides as well as the bifunctional protein of the peroxisomal fatty acid beta-oxidation pathway were specifically located only in peroxisomes. Considerable amounts of a polypeptide cross-reacting with the antiserum against the 36-kDa polypeptide were found in mitochondria.  相似文献   

6.
Treatment of rats with a new hypocholesterolemic drug BM 15766 induces proliferation of peroxisomes in pericentral regions of the liver lobule with distinct alterations of the peroxisomal membrane (Baumgart, E., K. Stegmeier, F. H. Schmidt, and H. D. Fahimi. 1987. Lab. Invest. 56:554-564). We have used ultrastructural cytochemistry in conjunction with immunoblotting and immunoelectron microscopy to investigate the effects of this drug on peroxisomal membranes. Highly purified peroxisomal fractions were obtained by Metrizamide gradient centrifugation from control and treated rats. Immunoblots prepared from such peroxisomal fractions incubated with antibodies to 22-, 26-, and 70-kD peroxisomal membrane proteins revealed that the treatment with BM 15766 induced only the 70-kD protein. In sections of normal liver embedded in Lowicryl K4M, all three membrane proteins of peroxisomes could be localized by the postembedding technique. The strongest labeling was obtained with the 22-kD antibody followed by the 70-kD and 26-kD antibodies. In treated animals, double-membraned loops with negative catalase reaction in their lumen, resembling smooth endoplasmic reticulum segments as well as myelin-like figures, were noted in the proximity of some peroxisomes. Serial sectioning revealed that the loops seen at some distance from peroxisomes in the cytoplasm were always continuous with the peroxisomal membranes. The double-membraned loops were consistently negative for glucose-6-phosphatase, a marker for endoplasmic reticulum, but were distinctly labeled with antibodies to peroxisomal membrane proteins. Our observations indicate that these membranous structures are part of the peroxisomal membrane system. They could provide a membrane reservoir for the proliferation of peroxisomes and the expansion of this intracellular compartment.  相似文献   

7.
The effects of di(2-ethylhexyl)phthalate, a typical peroxisomal proliferator, on the activities of key enzymes in the glycerophospholipid synthetic pathway and the incorporation of lipid precursors into liver lipids in vitro were studied periodically in rats. When di(2-ethylhexyl)phthalate was fed at the 1% level to rats, glycerol-3-phosphate acyltransferase activity increased 2-3-fold in liver homogenates and microsomes in 2-4 days. The specific activity of microsomal CTP:phosphocholine cytidylyltransferase increased by 1.5-fold, whereas the cytosolic activity was depressed. The microsomal CDPcholine:diacylglycerol cholinephosphotransferase specific activity decreased, whereas the activity in the homogenates increased, suggesting the proliferation of the hepatic endoplasmic reticulum in di(2-ethylhexyl)phthalate-treated rats. The incorporation of [1(3)-3H]glycerol or [1-14C]acetate into liver phospholipids in vitro increased in 2 days and stayed at a high level up to 12 days. The present study confirmed that di(2-ethylhexyl)phthalate induced an enhancement of phospholipid synthesis in the liver. The increase in hepatic phospholipid synthesis by this drug is presumably linked to the proliferation of peroxisomes and other intracellular membranes.  相似文献   

8.
Peroxisomal enoyl-CoA hydratase was purified from livers of mice treated with di-(2-ethylhexyl)phthalate and its properties compared with those of the 70 kDa protein present in the membranes prepared by carbonate extraction of peroxisomes. The two proteins had identical subunit molecular masses, of about 70,000 daltons. Limited proteolysis of these proteins using the V8 proteinase of S. aureus yielded identical peptide maps, with these peptides crossreacting with antiserum raised against the 70 kDa membrane protein. These data are consistent with the proposal that the peroxisomal 70 kDa membrane protein and the peroxisomal enoyl-CoA hydratase are the same protein.  相似文献   

9.
Peroxisomes were purified from livers of control mice and from mice treated with three agents which induce proliferation of hepatic peroxisomes — namely two structurally unrelated hypolipidemic drugs, clofibrate (ethyl--p-chlorophenoxyisobutyrate) and Wy-14,643 (4-chloro-6[2,3-xylidino)-2-pyrimidinylthio] acetic acid), and a plasticizer, DEHP (di-(2-ethylhexyl)phthalate).Membranes were isolated from these purified peroxisomes and analysed by SDS-polyacrylamide gel electrophoresis. All membranes which were tested, displayed two predominant integral membrane proteins of apparent molecular weights of 68 kDa and 70 kDa respectively, as well as a number of minor components. Treatment of animals with clofibrate, Wy-14,643 and DEHP was observed to result in each case in an increased proportion of the 70 kDa protein in the peroxisomal membranes. These treatments also resulted in increased peroxisomal fatty acid oxidation in livers and an increase in the proportion of catalase activity in the cytosolic fraction of liver cells.These results have been discussed in relation to alterations in the molecular composition of the membranes, the mechanisms of peroxisome proliferation and the inducibility of peroxisomal membrane proteins.  相似文献   

10.
Two major proteins with subunit molecular masses of 68 and 70 kDa were isolated from the integral membrane protein fraction of peroxisomes purified from mouse liver. The two proteins were shown to be distinct proteins by two criteria: first, immunoblot analysis demonstrated that antisera against the 68 kDa protein did not cross-react with the 70 kDa protein, and vice versa; and second, the partial peptide maps resulting from proteinase digestion of the proteins were different. Immunoblot analyses to test the specificities of the antisera demonstrated that only the expected molecular mass species in purified peroxisomes, and in membranes prepared from these organelles, were recognized; there was no identification of proteins from purified mitochondrial or microsomal fractions. The concentrations of both of these proteins were increased in livers of mice treated with clofibrate, a hypolipidemic drug and peroxisome proliferator, with the effect being greater for the 70 kDa component. The localization of the 68 kDa protein was shown to be completely integral to the peroxisome membrane. Although some 70 kDa protein was integral to the membrane, a significant proportion was released from the membrane by some procedures believed to detach peripheral proteins. The 70 kDa protein was also particularly susceptible to degradation during isolation - in particular, addition of EDTA to media used for isolation of peroxisomes resulted in membranes in which this protein was degraded to smaller immunoreactive fragments. These data have been discussed in relation to the significant clarification which they have provided of the status and characteristics of the major protein components of peroxisomal membranes.  相似文献   

11.
The membrane ultrastructure of isolated rat liver peroxisomes has been observed by rapid freezing and freeze-fracture techniques. Unidirectional and rotary shadowing allows a clear visualization of the intramembrane particles (IMPs) on both the protoplasmic fracture (PF) leaflet and the endoplasmic fracture (EF) leaflet and reveals an asymmetric distribution of IMPs. Both fracture faces were uniformly studded by IMPs, and the frequency was about seven times higher on the P face (2322 per 1.0 micron2) than on the E face (322 per 1.0 micron2). Administration of the peroxisomal proliferator clofibrate (ethyl-p-chlorophenoxyisobutyrate) induced a marked increase in the frequency of IMPs on both the P face (2.2-fold) and the E face (1.7-fold). The average size decreased (P less than 0.001) from 45.7 +/- 16.5 nm2 to 35.2 +/- 10.8 nm2 on the P face. A similar increase in the frequency of IMPs was observed on the P face (1.8-fold) and the E face (1.8-fold) of peroxisomes from rats fed a semisynthetic diet containing 20% (w/w) of partially hydrogenated fish oil. The average size increased (P less than 0.001) from 36.6 +/- 19.7 to 50.0 +/- 23.5 nm2 on the E face. This study demonstrates alterations both in frequency and size distribution of IMPs in liver peroxisomal membranes on exposure of rats to agents known to induce peroxisomal proliferation. The increase in frequency of IMPs was as expected from the observed increase in one of the major integral membrane polypeptides, with apparent molecular mass of 69 (or 70) kDa, in proliferating rat liver peroxisomes.  相似文献   

12.
In vitro synthesis of peroxisomal membrane polypeptides   总被引:4,自引:0,他引:4  
Peroxisomal membranes containing predominantly integral peroxisome membrane polypeptides were obtained from a highly purified peroxisomal fraction. Following sodium dodecylsulfate polyacrylamide gel electrophoresis three polypeptides with apparent molecular weights of 69, 36, and 22 kDa were isolated and used to raise antibodies in rabbits. Cell-free synthesis of these polypeptides was carried out in an in vitro translational system derived from rabbit reticulocytes. By subjecting peroxisomal membranes to reductive methylation [14C]-radiolabeled mature membrane polypeptides were obtained. The comparison of the three mature integral peroxisome membrane polypeptides with their corresponding in vitro synthesis products revealed no size differences indicating the lack of recognizable presequences for these peroxisomal membrane polypeptides.  相似文献   

13.
The biogenesis of peroxisomes was investigated in the model of regenerating rat liver after partial hepatectomy (PH), using analytical differential centrifugation in combination with immunoblotting and in vivo pulse labeling as well as immunoelectron microscopy. The total activity of catalase decreased sharply after PH, returning gradually over several days to normal levels. In the 16 to 32-h period the enzyme activity started to increase first in the heavy mitochondrial fraction, shifting at 28 h to the crude peroxisomal and at 32 h to the microsomal fraction, suggesting de novo formation of peroxisomes by budding or fragmentation from larger aggregates. Whereas most peroxisomal matrix proteins were reduced during the 16 to 32-h period after PH, the 26 and 70 kDa peroxisomal membrane proteins were increased. Moreover, in vivo pulse labeling studies with radioactive leucine showed significantly higher levels of specific activity in the peroxisomal membrane than in the matrix subfractions at 16 h with increasing labeling of the matrix at 32 h after PH. These findings suggest that de novo formation of peroxisomes in regenerating rat liver is initiated by the synthesis of membrane proteins and is followed by that of the matrix components.  相似文献   

14.
By using highly purified peroxisomes from rat liver, we have shown that peroxisomes contain manganese superoxide dismutase (MnSOD) activity and a 23 kDa protein immunoreactive with antibodies against purified mitochondrial MnSOD. Immunocytochemical studies have also revealed immunoreaction (immunogold) with MnSOD antibodies in mitochondria and peroxisomes. Studies of the intraperoxisomal localization of MnSOD have shown that in peroxisomes MnSOD is a component of the peroxisomal limiting membranes and dense core. Furthermore, the MnSOD level in peroxisomes was modulated by oxidative stress conditions such as ischemia-reperfusion or the treatment with ciprofibrate, a peroxisomal proliferator. These findings suggest that MnSOD in peroxisomes may play an important role in the dismutation of superoxide generated on the peroxisomal membrane for keeping the delicate balance of the redox state.  相似文献   

15.
The hypolipidaemic agents ciprofibrate and Wy-14,643 ([4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid) and the phthalate-ester plasticizer di-(2-ethylhexyl)-phthalate (DEHP), like other peroxisome proliferators, produce a significant hepatomegaly and induce the peroxisomal fatty acid beta-oxidation enzyme system together with profound proliferation of peroxisomes in hepatic parenchymal cells. Changes in the profile of liver proteins in rats following induction of peroxisome proliferation by ciprofibrate, Wy-14,643 and DEHP have been analysed by high-resolution two-dimensional gel electrophoresis. The proteins of whole liver homogenates from normal and peroxisome-proliferator-treated rats were separated by two-dimensional gel electrophoresis using isoelectric focusing for acidic proteins and nonequilibrium pH gradient electrophoresis for basic proteins. In the whole liver homogenates, the quantities of six proteins in acidic gels and six proteins in the basic gels increased following induction of peroxisome proliferation. Peroxisome proliferator administration caused a repression of three acidic proteins in the liver homogenates. By the immunoblot method using polyspecific antiserum against soluble peroxisomal proteins and monospecific antiserum against peroxisome proliferation associated Mr 80000 polypeptide (polypeptide PPA-80), the majority of basic proteins induced by these peroxisome proliferators appeared to be peroxisomal proteins. Polypeptide PPA-80 becomes the most abundant protein in the total liver homogenates of peroxisome-proliferator-treated rats. These results indicate that ciprofibrate, DEHP and Wy-14,643 induce marked changes in the profile of specific hepatic proteins and that some of these changes should serve as a baseline to identify a set of gene products that may assist in defining the specific 'peroxisome proliferator domain'.  相似文献   

16.
Peroxisomal ascorbate peroxidase (APX) (EC 1.11.1.11) was shown recently to sort through a subdomain of the ER (peroxisomal endoplasmic reticulum; pER), and in certain cases, alter the distribution and/or morphology of peroxisomes and pER when overexpressed transiently in Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells. Our goal was to gain insight into the dynamics of peroxisomal membrane protein sorting by characterizing the structure and formation of reorganized peroxisomes and pER. Specifically, we test directly the hypothesis that the observed phenomenon is due to the oligomerization of cytosol-facing, membrane-bound polypeptides. a process referred to as membrane "zippering". Results from differential detergent permeabilization experiments confirmed that peroxisomal APX is a C-terminal "tail-anchored" (Cmatrix-Ncytosol) membrane protein with a majority of the polypeptide facing the cytosol. Transient expression of several APX chimeras whose passenger polypeptides can form dimers or trimers resulted in the progressive formation of "globular" peroxisomes and circular pER membranes. Stable expression of the trimer-capable fusion protein yielded suspension cultures that reproducibly maintained a high degree of peroxisomal globules but relatively few detectable pER membranes. Electron micrographs revealed that the globules consisted of numerous individual peroxisomes, seemingly in direct contact with other peroxisomes and/or mitochondria. These peroxisomal clusters or aggregates were not observed in cells transiently expressing monomeric versions of APX. These findings indicate that the progressive, independent "zippering" of peroxisomes and pER is due to the post-sorting oligomerization of monomeric, cytosol-facing polypeptides that are integrally inserted into the membranes of "like" organelles. The dynamics of this process are discussed, especially with respect to the involvement of the microtubule cytoskeleton.  相似文献   

17.
The association of liver peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) with the synthesis of bile acids was investigated. When rats were given clofibrate, a peroxisome proliferator and stimulator of peroxisomal FAOS, the biosynthesis of bile acids was significantly increased. Di(2-ethylhexyl)phthalate, another peroxisome proliferator, also increased the biosynthesis of bile acids. On the other hand, administration of orotate, an inhibitor of mitochondrial FAOS activity, did not affect the biosynthesis. It is known that fatty acyl-CoA oxidase [EC 1.3.99.3] in peroxisomal FAOS conjugates with catalase [EC 1.11.1.6]. When the catalase activity of liver peroxisomes was irreversibly inhibited by administration of 3-amino-1,2,4-triazole (amino-triazole), the biosynthesis of bile acids was suppressed to about one-third, and the serum cholesterol level was increased. However, the bile acid components of the bile obtained from aminotriazole-treated rats were not essentially different from those of control rats, and no accumulation of intermediates of bile acid synthesis was found in this experiment. Peroxisomal FAOS activity of the liver from amino-triazole-treated rats was considerably lower than that of control liver. The above results indicate that liver peroxisomes play a role in the biosynthesis of bile acids in vivo.  相似文献   

18.
The biosynthesis of nonspecific lipid transfer protein (nsLTP) was investigated. Total RNA of rat liver was translated in a rabbit reticulocyte lysate cell-free protein-synthesizing system with [35S]methionine as label. The immunoprecipitation of translation products with affinity-purified anti-nsLTP antibody yielded 14.5- and 60-kDa [35S]polypeptides. The molecular mass of the former polypeptide was approximately 1.5 kDa larger than that of the purified mature nsLTP (13 kDa). The site of synthesis of nsLTP was studied by in vitro translation of free and membrane-bound polyribosomal RNAs followed by immunoprecipitation. mRNA for both the 14.5- and 60-kDa polypeptides were found predominantly in the free polyribosomal fraction in both normal and clofibrate-treated rats. Clofibrate, a hypolipidemic drug that proliferates peroxisomes, did not increase the relative amount of nsLTP mRNA in rat liver. Pulse-chase experiments in rat hepatoma H-35 cells suggested that nsLTP was synthesized as a larger precursor of 14.5 kDa and converted to a mature form of 13 kDa. We have recently shown that nsLTP is highly concentrated in peroxisomes in rat hepatocytes [Tsuneoka et al. (1988) J. Biochem. 104, 560-564]. Taken together, these results suggest that nsLTP is synthesized as a larger precursor of 14.5 kDa on cytoplasmic free polyribosomes, then post-translationally transported to peroxisomes, where the precursor is presumably proteolytically processed to its mature form of 13 kDa. The relationship between the 13-kDa nsLTP and the 60-kDa polypeptide is also discussed.  相似文献   

19.
Highly purified peroxisomal membranes stripped from their peripheral membrane proteins and only minimally contaminated with other membranes, contained three GTP-binding proteins of 29, 27 and 25 kDa, respectively. Bound radioactive GTP was displaced by unlabelled GTP, GTP analogs and GDP but not by GMP or other nucleotides. GTP binding was markedly decreased by trypsin treatment of intact purified peroxisomes; it increased 2-3-fold after pretreatment of the animals with a peroxisome proliferator. We conclude that the peroxisomal membrane contains small GTP-binding proteins that are exposed to the cytosol and that are firmly anchored in the membrane. We speculate that these proteins are involved in peroxisome multiplication by fission or budding during peroxisome biogenesis and proliferation.  相似文献   

20.
Biosynthesis of enzymes of peroxisomal beta-oxidation   总被引:5,自引:0,他引:5  
Male Wistar rats were fed a diet with or without di(2-ethylhexyl)phthalate (DEHP), a peroxisome proliferator, for 2 weeks. The increases in the individual enzymes of the hepatic peroxisomal beta-oxidation system after administration of DEHP were 31- to 33-fold. It was found by in vivo experiments using L-[4,5-3H]leucine and the immunoprecipitation technique that the rates of synthesis of the enzymes were 16- to 20-fold higher and those of degradation were 1.7- to 1.9-fold lower in the DEHP group. The translation rates of these enzymes in vitro with liver RNA in the reticulocyte-lysate system were 12- to 14-fold higher in the DEHP group. Short-term kinetic labeling experiments on acyl-CoA oxidase consisting of three subunits were conducted in vivo to explore the biogenesis of peroxisomes. The label was found in the biggest subunit of the enzyme in the supernatant fraction shortly after the label injection, but was distributed to the smaller subunits later. The labeling in the smaller subunits in the peroxisomal fraction was greater than that of the supernatant. The distribution of the label among the subunits in these subcellular fractions was the same as that of the protein amounts 1 day after the label injection. This paper reports that the increase in the quantities of peroxisomal enzymes upon administration of DEHP is mainly due to the increase in their synthesis rates caused by the increase in amounts of mRNA coding for these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号