首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We elucidated the relationship between cell proliferation and somatic embryogenesis in the culture of carrot cotyledons. Fresh weights of the cotyledon expiants were determined every five days while being cultured on a medium containing 2,4-D. Callus production increased exponentially from Day 20 to Day 25, showing a two-fold rate of proliferation. To examine the embryogenic potential of the callus, we pre-cultured cotyledon explants on an MS medium with 2,4-D, then transferred them to an MS basal medium at five-day intervals. Somatic embryos formed most frequently when the cotyledons were pre-cultured for 20 days on an MS medium that contained 5 μ2,4-D. The frequency of somatic embryo formation was 81%, while that of normal embryos with two cotyledons was 51% among those formed on a hormone-free medium. We used FACScan analysis to relate the embryogenic potential of the callus to the S phase in the cell cycle of cultured cells. The S phase was high after 25 days of culture on the medium with 5 μM 2,4-D. In contrast, the frequency of normal embryogenesis was higher at Day 20 of the pre-culture period. Culturing embryogenic calli on a medium with 5 μM 2,4-D was most favorable for producing somatic embryos with two cotyledons. We verified that active somatic embryogenesis was apparently related to cell division activity; somatic embryos induced from actively dividing cells were apt to accompany cotyledonary abnormality.  相似文献   

2.
The synthesis of putative stage-specific polypeptides during somatic embryogenesis of the carrot ( Daucus carota L. cv. Danvers) was investigated in the temperature-sensitive variants OB-2 and OB-3. These variants undergo normal embryo development to produce mature plantlets at the permissive temperature (24°C), but are arrested at the oblong stage to form elongated embryos without cotyledons at the restrictive temperature (33°C). Using two-dimensional polyacrylamide gel electrophoresis of in vivo labelled polypeptides, the patterns of stage-specific polypeptides in both lines were compared in: (1) oblong embryos grown at continuous 24°C vs oblong embryos exposed to 33°C during their temperature-sensitive period (i.e. embryos of identical morphology but different developmental fates); and (2) heartshaped embryos grown at constant 24°C vs enlarged oblong embryos exposed to 33°C during their temperature-sensitive period (i.e. embryos of the same age but different morphologies). The 22 putative stage-specific, polypeptides observed in this study fall into four classes: (1) line-specific, (2) age-specific, (3) unsynchronized, and (4) synchronized polypeptides. Only the last class, which consists of 4 polypeptides, exhibits synthesis patterns which are consistent with the polypeptides being causally involved in somatic embryo development. It is concluded that stage-specific behavior as assayed by PAGE analyses of simple 'present or absent' comparisons is insufficient to identify most of the polypeptides that may be relevant for somatic embryogenesis.  相似文献   

3.
Two-dimensional gels of phosphoproteins from carrot ( Daucus carota L. var. Juwarot) suspension cells labeled in vivo or in vitro revealed phosphoproteins that comigrate with carrot tubulin. A polyclonal antiserum to hibiscus tubulin immunoprecipitated an in vivo labeled phosphoprotein of 50 kDa. Cell-free extracts of carrot suspension cells phosphorylated both purified carrot and bovine brain tubulins in the presence of gamma-labeled adenosine triphosphate. This tubulin phosphorylating activity was reduced 2-fold in extracts from globular stage embryos and approximately 10-fold in extracts from heart/torpedo stage embryos. These data suggest that carrot cells phosphorylate tubulin, and that tubulin phosphorylating activity may be developmentally regulated  相似文献   

4.
The greatest number of embryos was obtained using young carrot callus cultured on Gamborg's B-5 medium containing 1 g l-1 casein hydrolysate and 10 -10 M 2,4-dichlorophenoxyacetic acid. The largest increase in embryogenesis for old cultures also was obtained using Gamborg's B-5 medium supplemented with 1 g l-1 casein hydrolysate and 10 -10 M 2,4-dichlorophenoxyacetic acid; however, no combination of factors for the older culture restored the initial vigorous morphogenetic response seen in young cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Changes in DNA, RNA and protein content, incorporation of 3H-thymidine, 14C-uridine and 3H-leucine and template activity of chromatin were investigated in the early process of somatic embryogenesis in a carrot (Daucus carota L. cv. Kurodagosun) cell suspension culture using a synchronous system. An embryogenetic culture in a medium containing 10-7M zeatin was compared with a non-embryogenetic culture in a medium containing 10-7M zeatin and 5 x 10-7M 2,4-D. DNA was synthesized very actively prior to and during the formation of globular embryos in the embryogenetic culture. The RNA and protein content per tube increased at an almost constant rate in both cultures, while the rate of incorporation of labelled precursors of RNA and protein rose much more prior to active DNA synthesis in the embryogenetic culture than in the non-embryogenetic culture. Template activity of chromatin was high in the early stage of embryogenesis in the embryogenetic culture. The results obtained here showed that synthesis and turnover of RNA and protein became active prior to active DNA synthesis in the early stage of embryogenesis, and that these changes at macromolecular levels may play important roles in embryogenesis.  相似文献   

6.
The development of somatic embryos is, in many plants, inhibited by 2,4-dichlorophenoxyacetic acid (2,4-D) and other auxins. The finding that difluoromethylornithine (DFMO) can counteract this inhibition has been used to test some of the hypotheses for the mechanism of inhibition.
Inhibition of somatic embryogenesis in carrot ( Daucus carota L.) by exogenous ethylene (from ethephon), antioxidants (ascorbic acid and glutathione), ethanol/acetaldehyde and abscisic acid was not counteracted by DFMO, indicating that the inhibitory effect of 2,4-D is not manifest through the formation of these compounds. Embryogenesis was abolished by micromolar concentrations of the polar auxin transport inhibitors 2, 3, 5-triiodobenzoic acid (TIBA), N-1-naphthylphthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA). This inhibition was counteracted to a considerable extent by DFMO. Inhibition by relatively high concentrations of the antiauxin 2-( p -chlorophenoxy)-isobutyric acid (CPIB), which does not affect polar auxin transport, was in contrast not counteracted by DFMO. These findings indicate that exogenous auxins may inhibit embryogenesis by interfering with the ability of postglobular embryos to set up internal auxin gradients necessary for polarized growth.  相似文献   

7.
Almost homogeneous populations representing different developmental stages of somatic embryos (globular, torpedo-shaped, plantlets) and vacuolated cells were obtained from a cell suspension culture of carrot. The concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and methylated DNA were determined in embryos at different developmental stages and were found to increase during somatic embryogenesis. The highest increase during embryogenesis was a 5-fold increase in the level of SAM. A considerable increase in the methylation index (SAM/SAH ratio) was also found. We propose that the levels of SAM and SAH may be involved in the control of somatic embryogenesis by affecting the level of DNA methylation, which in turn might cause differential changes in gene activation. An increase in the level of SAM may be a prerequisite for progression of embryogenesis and the development of complete embryos.  相似文献   

8.
Carrot somatic embryogenesis was strongly inhibited in high-cell-density cultures. This inhibition was not caused by depletion of nutrients or physical damage but by factor(s) released into the culture medium from cells during culture. A conditioned medium prepared by eliminating cells after high-cell-density culture inhibited somatic embryogenesis. The degree of inhibition increased with the amount of conditioned medium. A dialysis experiment revealed that the molecular weight of the inhibiting factor(s) was below 3,500. We also found that the conditioned medium contained a high-molecular-weight factor(s), which stimulated somatic embryogenesis. Received: 13 March 1998 / Revision received: 19 May 1998 / Accepted: 1 June 1998  相似文献   

9.
β-Galactosidase (β-Galase, EC 3.2.1.23) activity has been detected in a culture medium of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The extracellular β-Galase (β-Galase-II) was purified to electrophoretic homogeneity from the concentrated medium using ammonium sulfate precipitation, chromatography on CM-Sephadex C-50. DEAE-Sepharose CL-6B and Sephacryl S-200HR, and preparative PAGE. The molecular mass of the purified enzyme was estimated to be 65 kDa by Sephacryl S-200HR gel-permeation, and 60 kDa by SDS-PAGE after treatment with SDS and 2-mercaptoethanol. The pI was 6.5. The Km and Vmax values for p -nitrophenyl (PNP)-β-D-galactopyranoside were 0.17 m M and 31.9 μmol (mg protein)-1, h-1, respectively. The optimal activity in McIlvaine's buffer occurred at pH 4.0–4.4. The enzyme activity was inhibited by Co24, Cu2+, Hg2-, p -chloromercuribenzoate (PCMB) and D-galactono-1,4-lactone. The enzyme acted on citrus galactan and larchwood arabinogalactan in an exo-fashion, and was slightly involved in the hydrolysis of an acidic pectic polymer containing arabinosyl and galactosyl residues and in the breakdown of cell walls isolated from carrot cell cultures.  相似文献   

10.
11.
A mixed culture comprised of both embryonic globules and nonembryogenic callus. was derived from seedling hypocotyls of Daucus carota cv. Scarlet Nantes on 2,4-D-containing medium using well-established methods. Then the mixed cultures were transferred to, and serially subcultured on, a hormone-free medium near pH 4. The medium contained 1 m M NH+ as the sole nitrogen source. When cultured in this way, embryonic globules were able to multiply without development into later embryo stages Nonembryogenic callus did not survive. Continuous culture of embryonic globules on this low pH hormone-free medium yielded cultures consisting entirely of preglobular stage proembryos (PGSPs). PGSP cultures have been maintained as such with continuous multiplication for nearly 2 years without loss of embryogenic potential. These hormone-free-maintained PGSPs continue their development to later embryo stages when cultured on the same hormone-free medium buffered at pH 5.8. We show that hormone-free medium near pH 4 can replace 2.4-D in its ability to sustain multiplication of 2,4-D-initiated embryogenic cells of carrot at an acceptable growth rate without their development into later embryo stages. This procedure provides selective conditions that do not permit the growth of nonembryogenic cells while providing an adequate environment for embryogenic cell proliferation and should prove invaluable in studying habituation.  相似文献   

12.
Cell suspension cultures of Carica candamarcensis derived from hypocotyl calli were tested concerning their in vitro embryogenic capacity to improve asexual propagation rates in this species. Somatic embryos developed in culture from cells in suspension or from microcalli. Responses were affected by nutrient media and phytohormones used. Best results were obtained by growing the cells in suspension in Nitsch and Nitsch medium containing naphthaleneacetic acid and then plating them upon the same medium containing benzyladenine, or combinations of both hormones.  相似文献   

13.
14.
Endogenous levels of ethylene appeared to he suhoptimal for somatic embryogenesis in a suspension culture of carrot. Low concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC). 2-chloroethylphosphonic acid (ethephon) and elhylene stimulated embryogenesis whereas higher concentrations were inhibitory. The stimulation by ACC was through its conversion to ethylene. whereas the inhibition by ACC was not. Low concentrations of AgNO3. an inhibitor of ethylene action, inhibited embryo-genesis but stimulated ethylene production. Aminoethoxyvinylglycine (AVG) and aminooxyacetic acid (AOA). commonly used inhibitors of ACC synthase. inhibited both embryogenesis and ethylene production. However, the inhibition of embryogenesis was not related to the inhibition ote ethylene production. Very low concentrations of AVG stimulated embryo production in a way unrelated to its effect on ethylene production. Salicylic acid and CoCl2. inhibitors of ACC oxidase in other systems, inhibited embryogenesis but. again, in way(s) unrelated to their inhibition of ethylene production. In fact, low concentrations of salicylic acid stimulated rather than inhibited ethylene production. The results show that in suspension-cultured cells, caution is warranted in the interpretation of results obtained with agents presumed to inhibit ethylene biosynthesis. The stimulation of somatic embryogenesis by ethylene unequivocally shows that the inhibition of embryo development by 2.4-dichlorophenoxyacetic acid (2.4-D) and other auxins cannot be through their stimulatory effect on ethylene production.  相似文献   

15.
Exo-polygalacturonase (exo-PGase, EC 3.2.1.67) activity has been detected in a culture filtrate of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The extracellular exo-PGase was purified to electrophoretic homogeneity using DEAE-Sephadex A-50 ion-exchange chromatography, Sephadex G-150 gel filtration, and preparative polyacrylamide gel electrophoresis (PAGE). The molecular mass of the purified enzyme was calculated to be 48 kDa from Sephadex G-200 gel filtration, and 50 kDa from sodium dodecyl sulfate (SDS)-PAGE after treatment with SDS and 2-mercaptoethanol. The isoelectric point was at pH 6.2. The Km and Vmax values for polygalacturonate (degree of polymerization: 52) were 14.4 μ M and 25.6 μmol (mg protein)−1 h−1, respectively. The optimal activity in McIlvaine's buffer occurred at pH 4.6. The enzyme activity was inhibited by Ba2+, Cu2+, Mn2+ and Hg2+. The enzyme was involved in ca 15% hydrolysis of the acidic polymer purified from carrot pectic polysaccharides, and connected with the release of galacturonic acid. Even after an exhaustive reaction the enzyme had, however, little or no effect on cell walls from carrot cell cultures.  相似文献   

16.
The occurrence of the polarized synthesis of DNA in embryogenic cell clusters of carrot on the third and fourth days after transfer to an embryogenesis-inducing medium was observed by labeling with [3H]thymidine and autoradiography. The cells that were actively synthesizing DNA were separated from cells that were not synthesizing DNA by maceration of cell clusters into individual protoplasts and centrifugation in a Percoll density gradient. [35S]Methionine-labeled proteins extracted from the two types of cell were analyzed by SDS-PAGE and fluorography. Three polypeptides (of 69, 98 and 108 kD, respectively) were found only in cells that were actively synthesizing DNA and could be candidates for markers of the polarity of DNA synthesis that is specific to embryogenesis.  相似文献   

17.
Somatic embryogenesis in the carrot was used to model zygotic embryogenesis because the spatial and temporal changes in somatic and zygotic embryogenesis are quite similar. To establish an enhancer-trapping system for somatic embryogenesis in the carrot, we constructed 2 enhancer-trap vectors (pETVs) using the GUS reporter gene with a minimal promoter. We also constructed several positive control vectors (pPCVs) using the CaMV 35S promoter. These are models in which pETVs are inserted near a native enhancer region in correct or reverse orientation. First, we tested whether these vectors could be used as enhancer-trap vectors using transgenic hairy root of tobacco. Histochemical GUS assays revealed that pETVs could be used as enhancer-trap vectors, even when the reporter gene in the pETVs was inserted near the native enhancer. Subsequently, we examined the availability of pETVs in somatic embryogenesis in the carrot. The constructed vector was activated in transgenic carrot embryogenic cells at high frequency (64%). This suggests that the enhancer-trapping vector is suitable as a carrot somatic embryogenesis system.  相似文献   

18.
Embryogenic cultures of cultivated carrot ( Daucus crota cv. Scarlet Nantes) were initiated from seedling hypocotyls on hormone-containing nutrient medium and from wounded zygotic embryos on hormone-free medium. Both of these cultures were maintained with continuous multiplication as unorganized, embryogenic cell masses on hormone-free medium at pH 4.0, containing NH+4 as the sole nitrogen source. When grown on hormone-free medium at pH 4.0, neither culture contained any elongated cells. Virtually all cells were densely cytoplasmic and nearly spherical. Some cells were enlarged, not densely cytoplasmic, but always spherical. When either culture was transferred to an auxin-containing medium at pH 5.8, numerous elongated cells were produced. Elongated cells were observed when either naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid was used, and whether the nitrogen source was NH+4 alone or a combination of NH+4 and NO3. Elongated cells were more abundant when a combined nitrogen source was used. When cultures containing elongated cells were transferred to and multiplied on hormone-free or hormone-containing medium buffered at pH 4.0, all elongated cells disappeared after 2 weeks. No elongated cells were observed in any of the lines tested at pH 4.0. These results clearly show that it was the pH of the culture medium and not the presence or absence of an auxin or the nitrogen source(s) that permitted or prevented cell elongation in the embryogenic cultures tested.  相似文献   

19.
Carrot cells were cultured under various light spectra and intensities at different times following the initiation of suspension cultures from callus. The highest intensity white and blue light treatments were inhibitory to growth and somatic embryogenesis. Red and green light were not different from dark treatments which produced the highest total number of embryoids. After extended time in culture, carrot cells in blue light produced secondary embryoids and anthocyanin. Cultures in red light had multiple cotyledons and orange-pigmented radicles. Leafy cotyledons occurred in all light treatments. Abscisic acid production peaked at the heart stage of embryogenesis and synthesis was most pronounced in blue light. Red light enhanced development to the heart stage. Both the red and blue light spectra may be used to manipulate carrot cell cultures to optimize growth.  相似文献   

20.
An upward shift in the concentration of calcium present in the medium during somatic embryogenesis increased the number of embryos produced approximately two-fold. This was observed when embryogenic suspension cells grown in 2,4-D medium with the normal calcium concentration of 10–3 M were transferred to hormone-free medium containing 10–2 M calcium and when embryogenic suspension cells grown in 2,4-D medium containing 10–4 M calcium were transferred to hormone-free medium with 10–3 M calcium. At calcium concentrations between 6·10–3 and 10–2 M globular stage somatic embryos were found in cultures supplemented with 2·10–6 M of 2,4-D indicating that elevated calcium counteracts the inhibitory effect of 2,4-D on somatic embryogenesis. No qualitative changes were found in the pattern of extracellular polypeptides as a result of growth and embryogenesis in media with different calcium concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号