首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hansenula polymorpha GSH1/MET1 gene was cloned by complementation of glutathione-dependent growth of H. polymorpha gsh1 mutant isolated previously as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resistant and cadmium ion sensitive clone. The H. polymorpha GSH1 gene was capable of restoring cadmium ion resistance, MNNG sensitivity, normal glutathione level and cell proliferation on minimal media without addition of cysteine or glutathione, when introduced into the gsh1 mutant cells. It was shown that the H. polymorpha GSH1 gene has homology to the Saccharomyces cerevisiae MET1 gene encoding S-adenosyl-L-methionine uroporphyrinogen III transmethylase, responsible for the biosynthesis of sulfite reductase cofactor, sirohaem. The H. polymorpha GSH1/MET1 gene deletion cassette (Hpgsh1/met1::ScLEU2) was constructed and corresponding null mutants were isolated. Crossing data of the point gsh1 and null gsh1/met1 mutants demonstrated that both alleles were located to the same gene. The null gsh1/met1 mutant showed total growth restoration on minimal media supplemented with cysteine or glutathione as a sole sulfur source, but not with inorganic (sulfate, sulfite) or organic (methionine, S-adenosylmethionine) sources of sulfur. Moreover, both the point gsh1 and null gsh1/met1 mutants displayed increased sensitivity to the toxic carbon substrate methanol, formaldehyde, organic peroxide and cadmium ions.  相似文献   

2.
The cloning of 7.2- and 9.6-kbp fragments of the methylotrophic yeast Hansenula polymorpha DNA restored the wild-type phenotype Gsh+ in the glutathione-dependent gsh1 and gsh2 mutants of this yeast defective in glutathione (GSH) synthesis because of a failure of the gamma-glutamylcysteine synthetase reaction. The 9.6-kbp DNA fragment was found to contain a 4.3-kbp subfragment, which complemented the Gsh- phenotype of the gsh2 mutant. The Gsh+ transformants of the gsh1 and gsh2 mutants, which bear plasmids pG1 and pG24 with the 7.2- and 4.3-kbp DNA fragments, respectively, had a completely restored wild-type phenotype with the ability to synthesize GSH and to grow in GSH-deficient synthetic media on various carbon sources, including methanol, and with acquired tolerance to cadmium ions. In addition, the 4.3-kbp DNA fragment borne by plasmid pG24 eliminated pleiotropic changes in the gsh2 mutants associated with methylotrophic growth in a semisynthetic (GSH-supplemented) medium (poor growth and alterations in the activity of the GSH-catabolizing enzyme gamma-glutamyltransferase and the methanol-oxidizing enzyme alcohol oxidase).  相似文献   

3.
GGT1 gene of the methylotrophic yeast Hansenula polymorpha appears to be a structural and functional homologue of Saccharomyces cerevisiae CIS2/ECM38 gene encoding gamma-glutamyltranspeptidase (gammaGT). This is confirmed by the absence of the corresponding activity of gammaGT in the mutant with disrupted GGT1 gene. It was shown that gammaGT of both H. polymorpha and S. cerevisiae are involved in detoxification of electrophilic xenobiotics, as the corresponding mutants appeared to be defective in the disappearance of the fluorescent vacuolar complex of GSH with xenobiotic bimane and the further diffuse distribution of this complex in the cytosol. We hypothesize that metabolism of electrophilic xenobiotics in the yeasts H. polymorpha and S. cerevisiae occurs through a gammaGT-dependent mercapturic acid pathway of GSH-xenobiotic detoxification, similar to that known for mammalian cells, with cysteine-xenobiotics and/or N-acetylcysteine-xenobiotics as the end products.  相似文献   

4.
In a screen for temperature-sensitive (37 degrees C) mutants of Saccharomyces cerevisiae that are defective in the proper localization of the Golgi transmembrane protein Emp47p, we uncovered a constitutive loss-of-function mutation in CYS3/STR1, the gene coding for cystathionine-gamma-lyase. We showed by immunofluorescence, sucrose-gradient analysis and quantitative Western analysis that the mutant mislocalized Emp47p to the vacuole at high temperature, while Golgi structures were apparently normal and biosynthetic routing of the vacuolar carboxypeptidase Y (CPY) and the plasma membrane GPI-anchored protein Gas1p were unaffected. The effect of high temperature on Emp47p localization, as well as the temperature sensitivity of the mutant strain on rich medium, appear to be caused by oxidative stress and are correlated with severe reductions in the intracellular levels of low-molecular-weight thiols. In accordance with this conclusion, cys3-2 mutant cells were more sensitive to the oxidizing agent 1-chloro-2,4-dinitrobenzene, which also aggravated the mislocalization of Emp47p observed at high temperature. Furthermore, all the phenotypes of the mutant were completely complemented by exogenous supply of the main low-molecular-weight thiol, glutathione (GSH) and, importantly, the thiol beta-mercaptoethanol reversed the temperature sensitivity of the mutant. A comparison of our mutant with a mutant defective in GSH synthesis showed that gsh1Delta cells were similar to wild-type cells under the stress conditions tested, with the exception of one novel oxidative stress-related phenotype that is observed in both cys3-2 and gsh1Delta mutant cells - a defect in CDP-DAG metabolism upon shift to the non-permissive temperature. As most of the stress-related phenotypes of cys3-2 mutant cells are more severe than those seen in gsh1Delta cells, we conclude that cysteine as such is required and sufficient to confer some degree of protection from oxidative stress in yeast cells.  相似文献   

5.
6.
H Masai  T Miyake    K Arai 《The EMBO journal》1995,14(13):3094-3104
Degenerate oligonucleotide-directed polymerase chain reaction was conducted to clone a possible Schizosaccharomyces pombe homologue [hsk1 for a putative homologue of CDC7 (seven) kinase 1] of Saccharomyces cerevisiae Cdc7 kinase. The cloned cDNA for hsk1+ contains an open reading frame consisting of 507 amino acids with predicted mol. wt of 58,370 that possesses overall amino acid identity of 46% (65% including similar residues) to CDC7. In addition to conserved domains for serine-threonine kinases, the predicted primary structure of Hsk1 contains three 'kinase insert' sequences characteristic to Cdc7 at the positions identical to those of Cdc7. Whereas the length and sequences of the kinase inserts are diverged between the two yeast species, 58% identity (76% including similar residues) is detected within the kinase conserved domains. The hsk1+ gene, which is present as a single copy on the S.pombe chromosome, contains two introns within the coding frame. Disruption of the hsk1+ gene by insertion of the ura4+ gene is lethal to growth. Analysis of the DNA content of germinating spores that contain hsk1 null alleles indicates that DNA replication is inhibited in the mutant. The morphology of these mutant spores after germination indicates abnormal nuclear division in some population of germinating spores, suggesting either that Hsk1 may be required for inhibition of mitosis until completion of S phase or that it may also be involved in proper execution of mitosis. Our results suggest that hsk1+ is a strong candidate for the functional fission yeast homologue of budding yeast CDC7 and that a mechanism through which initiation of chromosomal replication is regulated may be conserved between the two yeast species.  相似文献   

7.
We describe the cloning of the Hansenula polymorpha PER1 gene and the characterization of the gene and its product, PER1p. The gene was cloned by functional complementation of a per1 mutant of H. polymorpha, which was impaired in the import of peroxisomal matrix proteins (Pim- phenotype). The DNA sequence of PER1 predicts that PER1p is a polypeptide of 650 amino acids with no significant sequence similarity to other known proteins. PER1 expression was low but significant in wild-type H. polymorpha growing on glucose and increased during growth on any one of a number of substrates which induce peroxisome proliferation. PER1p contains both a carboxy- (PTS1) and an amino- terminal (PTS2) peroxisomal targeting signal which both were demonstrated to be capable of directing bacterial beta-lactamase to the organelle. In wild-type H. polymorpha PER1p is a protein of low abundance which was demonstrated to be localized in the peroxisomal matrix. Our results suggest that the import of PER1p into peroxisomes is a prerequisite for the import of additional matrix proteins and we suggest a regulatory function of PER1p on peroxisomal protein support.  相似文献   

8.
Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1 leads to a pleiotropic phenotype that includes the constitutive presence of peroxisomes and peroxisomal enzymes in glucose-grown cells. Glucose transport and repression defects in a UV-induced gcr1-2 mutant were found to result from a missense point mutation that substitutes a serine residue (Ser(85)) with a phenylalanine in the second predicted transmembrane segment of the Gcr1 protein. In addition to glucose, mannose and trehalose fail to repress the peroxisomal enzyme, alcohol oxidase in gcr1-2 cells. A mutant deleted for the GCR1 gene was additionally deficient in fructose repression. Ethanol, sucrose, and maltose continue to repress peroxisomes and peroxisomal enzymes normally and therefore, appear to have GCR1-independent repression mechanisms in H. polymorpha. Among proteins of the hexose transporter family of baker's yeast, Saccharomyces cerevisiae, the amino acid sequence of the H. polymorpha Gcr1 protein shares the highest similarity with a core region of Snf3p, a putative high affinity glucose sensor. Certain features of the phenotype exhibited by gcr1 mutants suggest a regulatory role for Gcr1p in a repression pathway, along with involvement in hexose transport.  相似文献   

9.
A grande gsh1 disruptant mutant of Saccharomyces cerevisiae was generated by crossing a petite disruptant to a wild-type grande strain. This strain was relatively stable, but generated petites at an elevated frequency, illustrating the ancillary role of glutathione (GSH) in the maintenance of the genetic integrity of the mitochondrial genome. The availability of the grande gsh1 deletant enabled an evaluation of the role of GSH in the cellular response to hydrogen peroxide independent of the effects of a petite mutation. The mutant strain was more sensitive to hydrogen peroxide than the wild-type strain but was still capable of producing an adaptive stress response to this compound. GSH was found to be essential for growth and sporulation of the yeast, but the intracellular level needed to support growth was at least two orders of magnitude less than that normally present in wild-type cells. This surprising result indicates that there is an essential role for GSH but only very low amounts are needed for growth. This result was also found in anaerobic conditions, thus this essential function does not involve protection from oxidative stress. Suppressors of the gsh1 deletion mutation were isolated by ethylmethanesulfonate mutagenesis. These were the result of a single recessive mutation (sgr1, suppressor for glutathione requirement) that relieved the requirement for GSH for growth on minimal medium but did not affect the sensitivity to H(2)O(2) stress. Interestingly, the gsh1 sgr1 mutant generated petites at a lower rate than the gsh1 mutant. Thus, it is suggested that the essential role of GSH is involved in the maintenance of the mitochondrial genome.  相似文献   

10.
11.
Our previous studies have shown that glutathione is an essential metabolite in the yeast Saccharomyces cerevisiae because a mutant deleted for GSH1, encoding the first enzyme in gamma-l-glutamyl-l-cysteinylglycine (GSH) biosynthesis, cannot grow in its absence. In contrast, strains deleted for GSH2, encoding the second step in GSH synthesis, grow poorly as the dipeptide intermediate, gamma-glutamylcysteine, can partially substitute for GSH. In this present study, we identify two high copy suppressors that rescue the poor growth of the gsh2 mutant in the absence of GSH. The first contains GSH1, indicating that gamma-glutamylcysteine can functionally replace GSH if it is present in sufficiently high quantities. The second contains CDC34, encoding a ubiquitin conjugating enzyme, indicating a link between the ubiquitin and GSH stress protective systems. We show that CDC34 rescues the growth of the gsh2 mutant by inducing the Met4-dependent expression of GSH1 and elevating the cellular levels of gamma-glutamylcysteine. Furthermore, this mechanism normally operates to regulate GSH biosynthesis in the cell, as GSH1 promoter activity is induced in a Met4-dependent manner in a gsh1 mutant which is devoid of GSH, and the addition of exogenous GSH represses GSH1 expression. Analysis of a cis2 mutant, which cannot breakdown GSH, confirmed that GSH and not a metabolic product, serves as the regulatory molecule. However, this is not a general mechanism affecting all Met4-regulated genes, as MET16 expression is unaffected in a gsh1 mutant, and GSH acts as a poor repressor of MET16 expression compared with methionine. In summary, GSH biosynthesis is regulated in parallel with sulphate assimilation by activity of the Met4 protein, but GSH1-specific mechanisms exist that respond to GSH availability.  相似文献   

12.
Glutathione (GSH) synthetase (Gsh2) catalyzes the ATP-dependent synthesis of GSH from gamma-glutamylcysteine (gamma-Glu-Cys) and glycine. GSH2, encoding the Saccharomyces cerevisiae enzyme, was isolated and used to construct strains that either lack or overproduce Gsh2. The identity of GSH2 was confirmed by the following criteria: 1) the predicted Gsh2 protein shared 37-39% identity and 58-60% similarity with GSH synthetases from other eukaryotes, 2) increased gene dosage of GSH2 resulted in elevated Gsh2 enzyme activity, 3) a strain deleted for GSH2 was dependent on exogenous GSH for wild-type growth rates, and 4) the gsh2 mutant lacked GSH and accumulated the dipeptide gamma-Glu-Cys intermediate in GSH biosynthesis. Overexpression of GSH2 had no effect on cellular GSH levels, whereas overexpression of GSH1, encoding the enzyme for the first step in GSH biosynthesis, lead to an approximately twofold increase in GSH levels, consistent with Gsh1 catalyzing the rate-limiting step in GSH biosynthesis. In contrast to a strain deleted for GSH1, which lacks both GSH and gamma-Glu-Cys, the strain deleted for GSH2 was found to be unaffected in mitochondrial function as well as resistance to oxidative stress induced by hydrogen peroxide, tert-butyl hydroperoxide, and the superoxide anion. Furthermore, gamma-Glu-Cys was at least as good as GSH in protecting yeast cells against an oxidant challenge, providing the first evidence that gamma-Glu-Cys can act as an antioxidant and substitute for GSH in a eukaryotic cell. However, the dipeptide could not fully substitute for the essential function of GSH in the cell as shown by the poor growth of the gsh2 mutant on minimal medium. We suggest that this function may be the detoxification of harmful intermediates that are generated during normal cellular metabolism.  相似文献   

13.
Glutathione (GSH) biosynthesis-deficient gsh1 and gsh2 null mutants of Arabidopsis thaliana have late embryonic-lethal and early seedling-lethal phenotypes, respectively, when segregating from a phenotypically wild-type parent plant, indicating that GSH is required for seed maturation and during germination. In this study, we show that gsh2 embryos generated in a partially GSH-deficient parent plant, homozygous for either the cad2 mutation in the GSH1 gene or homozygous for mutations in CLT1, CLT2 and CLT3 encoding plastid thiol transporters, abort early in embryogenesis. In contrast, individuals homozygous for the same combinations of mutations but segregating from heterozygous, phenotypically wild-type parents exhibit the parental gsh2 seedling-lethal phenotype. Similarly, homozygous gsh1 embryos generated in a gsh1/cad2 partially GSH-deficient parent plant abort early in development. These observations indicate that the development of gsh1 and gsh2 embryos to a late stage is dependent on the level of GSH in the maternal plant.  相似文献   

14.
15.
报道一种适用于产朊假丝酵母Candida utilis的基因敲除系统,利用该敲除系统获得gsh1基因敲除杂合突变株。根据不同种属酵母菌γ-谷氨酰半胱氨酸合成酶(γ-GCS)蛋白质的保守序列,克隆C.utilis SZU 07-01的gsh1基因;以商品化质粒pPICZalpha A为基础,构建gsh1基因的敲除载体pPICZalpha A-kan 3,其中,kan基因的启动子TEF被替换为来自于C.utilis SZU 07-01的GAP启动子(pGAP:kan)。质粒电转化C.utilis,获得gsh1基因敲除杂合突变株C.utilis GSH-6。结合发酵培养得到的数据进行分析,突变株的γ-GCS酶活比出发菌株降低17.5%,GSH合成量降低61%,细胞干重降低18.5%。所构建敲除组件pGAP:kan的成功应用为从分子水平研究C.utilis中谷胱甘肽(GSH)的生理功能提供了一种新借鉴。  相似文献   

16.
The Pichia guilliermondii GSH1 and GSH2 genes encoding Saccharomyces cerevisiae homologues of glutathione (GSH) biosynthesis enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, respectively, were cloned and deleted. Constructed P. guilliermondii Δgsh1 and Δgsh2 mutants were GSH auxotrophs, displayed significantly decreased cellular GSH+GSSG levels and sensitivity to tert-butyl hydroperoxide, hydrogen peroxide, and cadmium ions. In GSH-deficient synthetic medium, growths of Δgsh1 and Δgsh2 mutants were limited to 3–4 and 5–6 cell divisions, respectively. Under these conditions Δgsh1 and Δgsh2 mutants possessed 365 and 148 times elevated riboflavin production, 10.7 and 2.3 times increased cellular iron content, as well as 6.8 and 1.4 fold increased ferrireductase activity, respectively, compared to the wild-type strain. Glutathione addition to the growth medium completely restored the growth of both mutants and decreased riboflavin production, cellular iron content, and ferrireductase activity to the level of the parental strain. Cysteine also partially restored the growth of the Δgsh2 mutants, while methionine or dithiothreitol could not restore the growth neither of the Δgsh1, nor of the Δgsh2 mutants. Besides, it was shown that in GSH presence riboflavin production by both Δgsh1 and Δgsh2 mutants, similarly to that of the wild-type strain, depended on iron concentration in the growth medium. Furthermore, in GSH-deficient synthetic medium P. guilliermondii Δgsh2 mutant cells, despite iron overload, behaved like iron-deprived wild-type cells. Thus, in P. guilliermondii yeast, glutathione is required for proper regulation of both riboflavin and iron metabolism.  相似文献   

17.
18.
19.
Glutathione (GSH) has been implicated in maintaining the cell cycle within plant meristems and protecting proteins during seed dehydration. To assess the role of GSH during development of Arabidopsis (Arabidopsis thaliana [L.] Heynh.) embryos, we characterized T-DNA insertion mutants of GSH1, encoding the first enzyme of GSH biosynthesis, gamma-glutamyl-cysteine synthetase. These gsh1 mutants confer a recessive embryo-lethal phenotype, in contrast to the previously described GSH1 mutant, root meristemless 1(rml1), which is able to germinate, but is deficient in postembryonic root development. Homozygous mutant embryos show normal morphogenesis until the seed maturation stage. The only visible phenotype in comparison to wild type was progressive bleaching of the mutant embryos from the torpedo stage onward. Confocal imaging of GSH in isolated mutant and wild-type embryos after fluorescent labeling with monochlorobimane detected residual amounts of GSH in rml1 embryos. In contrast, gsh1 T-DNA insertion mutant embryos could not be labeled with monochlorobimane from the torpedo stage onward, indicating the absence of GSH. By using high-performance liquid chromatography, however, GSH was detected in extracts of mutant ovules and imaging of intact ovules revealed a high concentration of GSH in the funiculus, within the phloem unloading zone, and in the outer integument. The observation of high GSH in the funiculus is consistent with a high GSH1-promoterbeta-glucuronidase reporter activity in this tissue. Development of mutant embryos could be partially rescued by exogenous GSH in vitro. These data show that at least a small amount of GSH synthesized autonomously within the developing embryo is essential for embryo development and proper seed maturation.  相似文献   

20.
Hansenula polymorpha uses maltase to grow on maltose and sucrose. Inspection of genomic clones of H. polymorpha showed that the maltase gene HPMAL1 is clustered with genes corresponding to Saccharomyces cerevisiae maltose permeases and MAL activator genes orthologues. We sequenced the H. polymorpha maltose permease gene HPMAL2 of the cluster. The protein (582 amino acids) deduced from the HPMAL2 gene is predicted to have eleven transmembrane domains and shows 39-57% identity with yeast maltose permeases. The identity of the protein is highest with maltose permeases of Debaryomyces hansenii and Candida albicans. Expression of the HPMAL2 in a S. cerevisiae maltose permease-negative mutant CMY1050 proved functionality of the permease protein encoded by the gene. HPMAL1 and HPMAL2 genes are divergently positioned similarly to maltase and maltose permease genes in many yeasts. A two-reporter assay of the expression from the HPMAL1-HPMAL2 intergenic region showed that expression of both genes is coordinately regulated, repressed by glucose, induced by maltose, and that basal expression is higher in the direction of the permease gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号