首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A very important question in immunology is to determine which factors decide whether an immune response can efficiently clear or control a viral infection, and under what circumstances we observe persistent viral replication and pathology. This paper summarizes how mathematical models help us gain new insights into these questions, and explores the relationship between antiviral therapy and long-term immunological control in human immunodeficiency virus (HIV) infection. We find that cytotoxic T lymphocyte (CTL) memory, defined as antigen-independent persistence of CTL precursors, is necessary for the CTL response to clear an infection. The presence of such a memory response is associated with the coexistence of many CTL clones directed against multiple epitopes. If CTL memory is inefficient, then persistent replication can be established. This outcome is associated with a narrow CTL response directed against only one or a few viral epitopes. If the virus replicates persistently, occurrence of pathology depends on the level of virus load at equilibrium, and this can be determined by the overall efficacy of the CTL response. Mathematical models suggest that controlled replication is reflected by a positive correlation between CTLs and virus load. On the other hand, uncontrolled viral replication results in higher loads and the absence of a correlation between CTLs and virus load. A negative correlation between CTLs and virus load indicates that the virus actively impairs immunity, as observed with HIV. Mathematical models and experimental data suggest that HIV persistence and pathology are caused by the absence of sufficient CTL memory. We show how mathematical models can help us devise therapy regimens that can restore CTL memory in HIV patients and result in long-term immunological control of the virus in the absence of life-long treatment.  相似文献   

2.
Pichinde virus (PV), a member of the arenavirus group, was found to elicit strong cell-mediated immune responses in various strains of mice. After primary i.v. inoculation, augmentation of natural killer (NK) cell activity occurred and peaked 3 to 4 days after infection. The NK response was followed by a second peak of cytotoxic activity that was found to be H-2 restricted, virus specific, and mediated by Thy-1.2+, Lyt-2.2+ lymphocytes. This cytotoxic T lymphocyte (CTL) response peaked 7 days post infection. Neutralizing antibodies were not detectable after PV infection of the mice. In light of this, we investigated the generation and kinetics of secondary cell-mediated immune responses after reinjection of homologous virus in vivo. Slight but significant augmentation of NK activity was observed 1 day after secondary virus challenge. As in the primary response, effectors of this NK activity rapidly became sensitive to anti-Thy-1.2 and complement treatment. NK activity rapidly returned to background levels and was followed by an anamnestic CTL response that peaked 4 days after reinjection of the virus. Thus, cell-mediated immune responses appeared more rapidly after secondary challenge in vivo, and the temporal relationship between NK and CTL generation was maintained. Both secondary NK and CTL responses were generated in mice that had been pretreated with cyclophosphamide (CY), suggesting that memory cell-mediated immune responses can be reactivated in vivo without undergoing cell division. In contrast, treatment with CY before primary infection delayed the appearance of virus-induced NK activity and abrogated the generation of H-2-restricted virus-specific CTL. Rechallenge of these CY-treated NK-primed mice resulted in the rapid generation of a secondary NK response that was not followed by either a primary or secondary CTL response. The data suggest that cells mediating a nonspecific effector function may possess specific memory. We discuss our results with respect to possible NK-CTL relationships.  相似文献   

3.
Cytotoxic T-lymphocyte (CTL) memory to viruses has traditionally been studied in an isolated setting. However, recent experiments have indicated that the presence of antigenically heterologous challenges can result in the attrition of CTL memory. Here we use mathematical models in order to explore the consequence of these dynamics for the ability of the immune system in controlling multiple infections. Mathematical models suggest that antigen-independent persistence of CTL memory is required in order to resolve and clear an infection. This ensures strong immunological pressure at low loads when the virus population declines towards extinction. If the number of antigenic stimuli exposed to the immune system crosses a threshold, we find that immunological pressure is significantly reduced at low loads and this can prevent virus clearance and reduces overall control of viral replication. Hence, exposure to many heterologous challenges reduces the ability of CTL memory to contribute to virus control. The higher the number of infections present in the host, the higher the overall virus load and the higher the total number of memory CTLs. Beyond a given threshold, addition of new viruses to the system results in accelerated loss of virus control which eventually leads to a reduction in the overall memory CTL population. These dynamics might contribute to the progressively weaker immunity observed as a result of ageing. In this context, antigenically variable pathogens expose the immune system to many heterologous challenges within a short period of time and this could result in accelerated ageing of the immune system. These results have important implications for vaccination and treatment strategies directed against viral infections.  相似文献   

4.

Background

Extensive studies of primary infection are crucial to our understanding of the course of HIV disease. In SIV-infected macaques, a model closely mimicking HIV pathogenesis, we used a combination of three markers -- viral RNA, 2LTR circles and viral DNA -- to evaluate viral replication and dissemination simultaneously in blood, secondary lymphoid tissues, and the gut during primary and chronic infections. Subsequent viral compartmentalization in the main target cells of the virus in peripheral blood during the chronic phase of infection was evaluated by cell sorting and viral quantification with the three markers studied.

Results

The evolutions of viral RNA, 2LTR circles and DNA levels were correlated in a given tissue during primary and early chronic infection. The decrease in plasma viral load principally reflects a large decrease in viral replication in gut-associated lymphoid tissue (GALT), with viral RNA and DNA levels remaining stable in the spleen and peripheral lymph nodes. Later, during chronic infection, a progressive depletion of central memory CD4+ T cells from the peripheral blood was observed, accompanied by high levels of viral replication in the cells of this subtype. The virus was also found to replicate at this point in the infection in naive CD4+ T cells. Viral RNA was frequently detected in monocytes, but no SIV replication appeared to occur in these cells, as no viral DNA or 2LTR circles were detected.

Conclusion

We demonstrated the persistence of viral replication and dissemination, mostly in secondary lymphoid tissues, during primary and early chronic infection. During chronic infection, the central memory CD4+ T cells were the major site of viral replication in peripheral blood, but viral replication also occurred in naive CD4+ T cells. The role of monocytes seemed to be limited to carrying the virus as a cargo because there was an observed lack of replication in these cells. These data may have important implications for the targeting of HIV treatment to these diverse compartments.  相似文献   

5.
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection.  相似文献   

6.
The dynamics of HIV-1 infection consist of three distinct phases starting with primary infection, then latency and finally AIDS or drug therapy. In this paper we model the dynamics of primary infection and the beginning of latency. We show that allowing for time delays in the model better predicts viral load data when compared to models with no time delays. We also find that our model of primary infection predicts the turnover rates for productively infected T cells and viral totals to be much longer than compared to data from patients receiving anti-viral drug therapy. Hence the dynamics of the infection can change dramatically from one stage to the next. However, we also show that with the data available the results are highly sensitive to the chosen model. We compare the results using analysis and Monte Carlo techniques for three different models and show how each predicts rather dramatic differences between the fitted parameters. We show, using a chi(2) test, that these differences between models are statistically significant and using a jackknifing method, we find the confidence intervals for the parameters. These differences in parameter estimations lead to widely varying conclusions about HIV pathogenesis. For instance, we find in our model with time delays the existence of a Hopf bifurcation that leads to sustained oscillations and that these oscillations could simulate the rapid turnover between viral strains and the appropriate CTL response necessary to control the virus, similar to that of a predator-prey type system.  相似文献   

7.
T-cell-mediated immune effector mechanisms play an important role in the containment of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication after infection. Both vaccination- and infection-induced T-cell responses are dependent on the host major histocompatibility complex classes I and II (MHC-I and MHC-II) antigens. Here we report that both inherent, host-dependent immune responses to SIVmac251 infection and vaccination-induced immune responses to viral antigens were able to reduce virus replication and/or CD4+ T-cell loss. Both the presence of the MHC-I Mamu-A*01 genotype and vaccination of rhesus macaques with ALVAC-SIV-gag-pol-env (ALVAC-SIV-gpe) contributed to the restriction of SIVmac251 replication during primary infection, preservation of CD4+ T cells, and delayed disease progression following intrarectal challenge exposure of the animals to SIV(mac251 (561)). ALVAC-SIV-gpe immunization induced cytotoxic T-lymphocyte (CTL) responses cumulatively in 67% of the immunized animals. Following viral challenge, a significant secondary virus-specific CD8+ T-cell response was observed in the vaccinated macaques. In the same immunized macaques, a decrease in virus load during primary infection (P = 0.0078) and protection from CD4 loss during both acute and chronic phases of infection (P = 0.0099 and P = 0.03, respectively) were observed. A trend for enhanced survival of the vaccinated macaques was also observed. Neither boosting the ALVAC-SIV-gpe with gp120 immunizations nor administering the vaccine by the combination of mucosal and systemic immunization routes increased significantly the protective effect of the ALVAC-SIV-gpe vaccine. While assessing the role of MHC-I Mamu-A*01 alone in the restriction of viremia following challenge of nonvaccinated animals with other SIV isolates, we observed that the virus load was not significantly lower in Mamu-A*01-positive macaques following intravenous challenge with either SIV(mac251 (561)) or SIV(SME660). However, a significant delay in CD4+ T-cell loss was observed in Mamu-A*01-positive macaques in each group. Of interest, in the case of intravenous or intrarectal challenge with the chimeric SIV/HIV strains SHIV(89.6P) or SHIV(KU2), respectively, MHC-I Mamu-A*01-positive macaques did not significantly restrict primary viremia. The finding of the protective effect of the Mamu-A*01 molecule parallels the protective effect of the B*5701 HLA allele in HIV-1-infected humans and needs to be accounted for in the evaluation of vaccine efficacy against SIV challenge models.  相似文献   

8.

Mathematical modeling and analysis can provide insight on the dynamics of ecosystems which maintain biodiversity in the face of competitive and prey–predator interactions. Of primary interests are the underlying structure and features which stabilize diverse ecological networks. Recently Korytowski and Smith (Theor Ecol 8(1):111–120, 2015) proved that a perfectly nested infection network, along with appropriate life history trade-offs, leads to coexistence and persistence of bacteria-phage communities in a chemostat model. In this article, we generalize their model in order to apply it to the within-host dynamics virus and immune response, in particular HIV and CTL (Cytotoxic T Lymphocyte) cells. Our model can describe sequential viral escape from dominant immune responses and rise in subdominant immune responses, consistent with observed patterns of HIV/CTL evolution. We find a Lyapunov function for the system which leads to rigorous characterization of persistent viral and immune variants, along with informing upon equilibria stability and global dynamics. Results are interpreted in the context of within-host HIV/CTL evolution and numerical simulations are provided.

  相似文献   

9.
Gp120 is a critical component of the envelope of HIV-1. Its role in viral entry is well described. In view of its position on the viral envelope, gp120 is a part of the retrovirus that immune cells encounter first and has the potential to influence antiretroviral immune responses. We propose that high levels of gp120 are present in tissues and may contribute to the failure of the immune system to fully control and ultimately clear the virus. Herein, we show for the first time that lymphoid tissues from acutely HIV-1/SIV (SHIV)-KB9-infected macaques contain deposits of gp120 at concentrations that are high enough to induce suppressive effects on T cells, thus negatively regulating the antiviral CTL response and contributing to virus survival and persistence. We also demonstrate that SHIV-KB9 gp120 influences functional T cell responses during SHIV infection in a manner that suppresses degranulation and cytokine secretion by CTLs. Finally, we show that regulatory T cells accumulate in lymphoid tissues during acute infection and that they respond to gp120 by producing TGFbeta, a known suppressant of cytotoxic T cell activity. These findings have significant implications for our understanding of the contribution of non-entry-related functions of HIV-1 gp120 to the pathogenesis of HIV/AIDS.  相似文献   

10.
The speed of virus replication has typically been seen as an advantage for a virus in overcoming the ability of the immune system to control its population growth. Under some circumstances, the converse may also be true: more slowly replicating viruses may evoke weaker cellular immune responses and therefore enhance their likelihood of persistence. Using the model of lymphocytic choriomeningitis virus (LCMV) infection in mice, we provide evidence that slowly replicating strains induce weaker cytotoxic-T-lymphocyte (CTL) responses than a more rapidly replicating strain. Conceptually, we show a "bell-shaped" relationship between the LCMV growth rate and the peak CTL response. Quantitative analysis of human hepatitis C virus infections suggests that a reduction in virus growth rate between patients during the incubation period is associated with a spectrum of disease outcomes, from fulminant hepatitis at the highest rate of viral replication through acute resolving to chronic persistence at the lowest rate. A mathematical model for virus-CTL population dynamics (analogous to predator [CTL]-prey [virus] interactions) is applied in the clinical data-driven analysis of acute hepatitis B virus infection. The speed of viral replication, through its stimulus of host CTL responses, represents an important factor influencing the pathogenesis and duration of virus persistence within the human host. Viruses with lower growth rates may persist in the host because they "sneak through" immune surveillance.  相似文献   

11.
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.  相似文献   

12.
Previously, we demonstrated that memory cell-mediated immune responses can be generated in Pichinde virus (PV)-primed mice after secondary challenge in vivo with homologous virus. Further, treatment of mice with cyclophosphamide (CY) before primary infection with PV abrogated the generation of H-2-restricted, virus-specific cytotoxic T lymphocytes (CTL), and rechallenge of these mice was followed by neither a primary nor a secondary CTL response. Here, we demonstrate that this CY-induced block in memory anti-PV CTL generation was not due to establishment of a persistent infection. Interestingly, this CY-induced block in memory anti-PV CTL generation was overcome by secondarily coinfecting mice with PV and lymphocytic choriomeningitis virus (LCMV) or PV and Tacaribe virus. Secondary infection with LCMV or Tacaribe virus alone did not elicit anti-PV CTL. Coinfection resulted in the generation of a PV-specific memory CTL response as judged by maximal activity on day 4 after rechallenge. Co-infection with PV and vesicular stomatitis virus, an unrelated rhabdovirus, did not efficiently restore memory anti-PV CTL responses. Memory anti-PV CTL responses were also restored when interleukin 2 (IL 2)-containing supernatants were injected i.p. after rechallenge of CY-treated mice with PV. To demonstrate that IL 2 was the responsible lymphokine in these preparations, highly purified IL 2 was added to in vitro cultures of spleen cells from CY-treated PV-primed mice. In the presence of PV-infected syngeneic macrophages, addition of purified IL 2 resulted in a dose-dependent restoration of H-2-restricted anti-PV CTL activity. The CTL precursor (CTLp) frequency of CY-treated PV-primed mice was markedly decreased from that of normal PV-primed mice. Thus, the long-lasting block in the ability to generate a PV-specific memory CTL response after CY treatment appears to be due to both a lack of helper T cell activity and a significant reduction of CTLp. However, this block may be overcome by coinfecting with viruses that cross-react at the helper T cell level or by exogenous treatment with highly purified IL 2.  相似文献   

13.
Cytotoxic T lymphocytes (CTLs) vigorously restrict primary human immunodeficiency virus (HIV) infection. However, the frequently erroneous process of viral replication favors the creation of mutants not recognizable by primary CTLs. Variants that tolerate the mutations may have selective advantage and may increase in abundance, until the immune system reacts against them. Therefore, such variants represent a way of propagating the viremia. With the aid of a simple mathematical model, here we estimate the intensity of CTL cross-reactivity against different strains of HIV in a typical progressor. We show that below a critical intensity of cross-reactivity, the concentration of a mutant created at primary peak grows and causes a secondary peak in viremia. Above this critical intensity, such a mutant strain is prevented from reaching a detectable level. We speculate about how this result may contribute to the design of an anti-HIV vaccine.  相似文献   

14.
It has long been appreciated that CD4+ T lymphocytes are dysfunctional in human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV)-infected individuals, and it has recently been shown that HIV/SIV infections are associated with a dramatic early destruction of memory CD4+ T lymphocytes. However, the relative contributions of CD4+ T-lymphocyte dysfunction and loss to immune dysregulation during primary HIV/SIV infection have not been fully elucidated. In the current study, we evaluated CD4+ T lymphocytes and their functional repertoire during primary SIVmac251 infection in rhesus monkeys. We show that the extent of loss of memory CD4+ T lymphocytes and staphylococcal enterotoxin B-stimulated cytokine production by total CD4+ T lymphocytes during primary SIVmac251 infection is tightly linked in a cohort of six rhesus monkeys to set point plasma viral RNA levels, with greater loss and dysfunction being associated with higher steady-state viral replication. Moreover, in exploring the mechanism underlying this phenomenon, we demonstrate that the loss of functional CD4+ T lymphocytes during primary SIVmac251 infection is associated with both a selective depletion of memory CD4+ T cells and a loss of the functional capacity of the memory CD4+ T lymphocytes that escape viral destruction.  相似文献   

15.
Experimental evidence and mathematical models indicate that CD4+ T-cell help is required to generate memory cytotoxicT-lymphocyte precursors (CTLp) that are capable of persisting without ongoing antigenic stimulation, and that such responses are necessary to clear an infection or to control it in the long term. Here we analyse mathematical models of simian immunodeficiency virus (SIV) replication in macaques, assuming that SIV impairs specific CD4+ T-cell responses. According to the models, fast viral replication during the initial stages of primary infection can result in failure to generate sufficient long-lived memory CTLp required to control the infection in the long term. Modelling of drug therapy during the acute phase of the infection indicates that transient treatment can minimize the amount of virus-induced immune impairment, allowing a more effective initial immune sensitization. The result is the development of high levels of memory CTLp that are capable of controlling SIV replication in the long term, in the absence of continuous treament. In the model, the success of treatment depends crucially on the timing and duration of antiretroviral therapy. Data on SIV-infected macaques receiving transient drug therapy during acute infection support these theoretical predictions. The data and modelling suggest that among subjects controlling SIV replication most efficiently after treatment, there is a positive correlation between cellular immune responses and virus load in the post-acute stage of infection. Among subjects showing less-efficient virus control, the correlation is negative. We discuss our findings in relation to previously published data on HIV infection.  相似文献   

16.

HIV preferentially infects activated CD4+ T cells. Current antiretroviral therapy cannot eradicate the virus. Viral infection of other cells such as macrophages may contribute to viral persistence during antiretroviral therapy. In addition to cell-free virus infection, macrophages can also get infected when engulfing infected CD4+ T cells as innate immune sentinels. How macrophages affect the dynamics of HIV infection remains unclear. In this paper, we develop an HIV model that includes the infection of CD4+ T cells and macrophages via cell-free virus infection and cell-to-cell viral transmission. We derive the basic reproduction number and obtain the local and global stability of the steady states. Sensitivity and viral dynamics simulations show that even when the infection of CD4+ T cells is completely blocked by therapy, virus can still persist and the steady-state viral load is not sensitive to the change of treatment efficacy. Analysis of the relative contributions to viral replication shows that cell-free virus infection leads to the majority of macrophage infection. Viral transmission from infected CD4+ T cells to macrophages during engulfment accounts for a small fraction of the macrophage infection and has a negligible effect on the total viral production. These results suggest that macrophage infection can be a source contributing to HIV persistence during suppressive therapy. Improving drug efficacies in heterogeneous target cells is crucial for achieving HIV eradication in infected individuals.

  相似文献   

17.
Since virus-specific CTL play a central role in containing HIV replication, a candidate AIDS vaccine should generate virus-specific CTL responses. In this study, the ability of a recombinant canarypox virus expressing SIV Gag-Pol-Env (ALVAC/SIV gag-pol-env) was assessed for its ability to elicit both dominant and subdominant epitope-specific CTL responses in rhesus monkeys. Following a series of five immunizations, memory CTL responses specific for a dominant Gag epitope could be demonstrated in the peripheral blood of vaccinated monkeys. Memory CTL responses to a subdominant Pol epitope were undetectable in these animals. Following challenge with SIVmac251, the experimentally vaccinated animals developed high frequency CTL responses specific for the dominant Gag epitope that emerged in temporal association with the early containment of viral replication. Interestingly, the experimentally vaccinated, but not the control vaccinated animals, developed CTL responses to the subdominant Pol epitope that were detectable only after containment of early viremia. Thus, recombinant canarypox vaccination elicited low frequency, but durable memory CTL populations. The temporal association of the emergence of the dominant epitope-specific response with early viral containment following challenge suggests that this immune response played a role in the accelerated clearing of early viremia in these animals. The later emerging CTL response specific for the subdominant epitope may contribute to the control of viral replication in the setting of chronic infection.  相似文献   

18.
During primary HIV infection the viral load in plasma increases, reaches a peak, and then declines. Phillips has suggested that the decline is due to a limitation in the number of cells susceptible to HIV infection, while other authors have suggested that the decline in viremia is due to an immune response. Here we address this issue by developing models of primary HIV-1 infection, and by comparing predictions from these models with data from ten anti-retroviral, drug-naive, infected patients. Applying nonlinear least-squares estimation, we find that relatively small variations in parameters are capable of mimicking the highly diverse patterns found in patient viral load data. This approach yields an estimate of 2.5 days for the average lifespan of productively infected cells during primary infection, a value that is consistent with results obtained by drug perturbation experiments. We find that the data from all ten patients are consistent with a target-cell-limited model from the time of initial infection until shortly after the peak in viremia. However, the kinetics of the subsequent fall and recovery in virus concentration in some patients are not consistent with the predictions of the target-cell-limited model. We illustrate that two possible immune response mechanisms, cytotoxic T lymphocyte destruction of infected target cells and cytokine suppression of viral replication, could account for declines in viral load data not predicted by the original target-cell-limited model. We conclude that some additional process, perhaps mediated by CD8+ T cells, is important in at least some patients.  相似文献   

19.
Our previous studies have shown that isolated cytotoxic T lymphocyte (CTL), B-cell, and T-helper epitopes, for which we coined the term minigenes, can be effective vaccines; when expressed from recombinant vaccinia viruses, these short immunogenic sequences confer protection against a variety of viruses and bacteria. In addition, we have previously demonstrated the utility of DNA immunization using plasmids encoding full-length viral proteins. Here we combine the two approaches and evaluate the effectiveness of minigenes in DNA immunization. We find that DNA immunization with isolated minigenes primes virus-specific memory CTL responses which, 4 days following virus challenge, appear similar in magnitude to those induced by vaccines known to be protective. Surprisingly, this vigorous CTL response fails to confer protection against a normally lethal virus challenge, although the CTL appear fully functional because, along with their high lytic activity, they are similar in affinity and cytokine secretion to CTL induced by virus infection. However this DNA immunization with isolated minigenes results in a low CTL precursor frequency; only 1 in ~40,000 T cells is epitope specific. In contrast, a plasmid encoding the same minigene sequences covalently attached to the cellular protein ubiquitin induces protective immunity and a sixfold-higher frequency of CTL precursors. Thus, we show that the most commonly employed criterion to evaluate CTL responses—the presence of lytic activity following secondary stimulation—does not invariably correlate with protection; instead, the better correlate of protection is the CTL precursor frequency. Recent observations indicate that certain effector functions are active in memory CTL and do not require prolonged stimulation. We suggest that these early effector functions of CTL, immediately following infection, are critical in controlling virus dissemination and in determining the outcome of the infection. Finally, we show that improved performance of the ubiquitinated minigenes most probably requires polyubiquitination of the fusion protein, suggesting that the enhancement results from more effective delivery of the minigene to the proteasome.  相似文献   

20.
Reversion of CTL escape-variant immunodeficiency viruses in vivo   总被引:17,自引:0,他引:17  
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号