首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular matrix (ECM) fragments or cryptic sites unmasked by proteinases have been postulated to affect tissue remodeling and cancer progression. Therefore, the elucidation of their identities and functions is of great interest. Here, we show that matrix metalloproteinases (MMPs) generate a domain (DIII) from the ECM macromolecule laminin-5. Binding of a recombinant DIII fragment to epidermal growth factor receptor stimulates downstream signaling (mitogen-activated protein kinase), MMP-2 gene expression, and cell migration. Appearance of this cryptic ECM ligand in remodeling mammary gland coincides with MMP-mediated involution in wild-type mice, but not in tissue inhibitor of metalloproteinase 3 (TIMP-3)-deficient mice, supporting physiological regulation of DIII liberation. These findings indicate that ECM cues may operate via direct stimulation of receptor tyrosine kinases in tissue remodeling, and possibly cancer invasion.  相似文献   

2.
Extracellular proteolysis during cell invasion is thought to be tightly organized, both temporally and spatially. This work presents a simple kinetic model that describes the interactions between extracellular matrix (ECM) proteins, proteinases, proteolytic fragments, and integrins. Nonmonotonous behavior arises from enzyme de novo synthesis consecutive to integrin binding to fragments or entire proteins. The model has been simulated using realistic values for kinetic constants and protein concentrations, with fibronectin as the ECM protein. The simulations show damped oscillations of integrin-complex concentrations, indicating alternation of maximal adhesion periods with maximal mobility periods. Comparisons with experimental data from the literature confirm the similarity between this system behavior and cell invasion. The influences on the system of cryptic functions of ECM proteins, proteinase inhibitors, and soluble antiadhesive peptides were examined. The first critical parameter for oscillation is the discrepancy between integrin affinity for intact ECM proteins and the respective proteolytic fragments, thus emphasizing the importance of cryptic functions of ECM proteins in cell invasion. Another critical parameter is the ratio between proteinase and the initial ECM protein concentration. These results suggest new insights into the organization of the ECM degradation during cell invasion.  相似文献   

3.
Regulation of matrix biology by matrix metalloproteinases   总被引:35,自引:0,他引:35  
Matrix metalloproteinases (MMPs) are endopeptidases that contribute to growth, development and wound healing as well as to pathologies such as arthritis and cancer. Until recently, it has been thought that MMPs participate in these processes simply by degrading extracellular matrix (ECM) molecules. However, it is now clear that MMP activity is much more directed and causes the release of cryptic information from the ECM. By precisely cleaving large insoluble ECM components and ECM-associated molecules, MMPs liberate bioactive fragments and growth factors and change ECM architecture, all of which influence cellular behavior. Thus, MMPs have become a focal point for understanding matrix biology.  相似文献   

4.
Lymphocytes accumulate within the extracellular matrix (ECM) of tumor, wound, or inflammatory tissues. These tissues are largely comprised of polymerized adhesion proteins such as fibrin and fibronectin or their fragments. Nonactivated lymphoid cells attach preferentially to polymerized ECM proteins yet are unable to attach to monomeric forms or fragments of these proteins without previous activation. This adhesion event depends on the appropriate spacing of integrin adhesion sites. Adhesion of nonactivated lymphoid cells to polymeric ECM components results in activation of the antigen receptor-associated Syk kinase that accumulates in adhesion-promoting podosomes. In fact, activation of Syk by antigen or agonists, as well as expression of an activated Syk mutant in lymphoid cells, facilitates their adhesion to monomeric ECM proteins or their fragments. These results reveal a cooperative interaction between signals emanating from integrins and antigen receptors that can serve to regulate stable lymphoid cell adhesion and retention within a remodeling ECM.  相似文献   

5.
Matrix metalloproteinases and angiogenesis   总被引:13,自引:0,他引:13  
Matrix metalloproteinases (MMPs) are a family of enzymes that proteolytically degrade various components of the extracellular matrix (ECM). Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of the ECM in order to allow endothelial cells to migrate and invade into the surrounding tissue. MMPs participate in this remodeling of basement membranes and ECM. However, it has become clear that MMPs contribute more to angiogenesis than just degrading ECM components. Specific MMPs have been shown to enhance angiogenesis by helping to detach pericytes from vessels undergoing angiogenesis, by releasing ECM-bound angiogenic growth factors, by exposing cryptic proangiogenic integrin binding sites in the ECM, by generating promigratory ECM component fragments, and by cleaving endothelial cell-cell adhesions. MMPs can also contribute negatively to angiogenesis through the generation of endogenous angiogenesis inhibitors by proteolytic cleavage of certain collagen chains and plasminogen and by modulating cell receptor signaling by cleaving off their ligand-binding domains. A number of inhibitors of MMPs that show antiangiogenic activity are already in early stages of clinical trials, primarily to treat cancer and cancer-associated angiogenesis. However, because of the multiple effects of MMPs on angiogenesis, careful testing of these MMP inhibitors is necessary to show that these compounds do not actually enhance angiogenesis.  相似文献   

6.
The involvement of matrix metalloproteinase (MMPs)-2 and -9, also known as gelatinases, in cancer cell migration and invasion has been well documented, although it is not yet clear how they facilitate metastasis formation in the course of malignancies. The idea that gelatinases are responsible for degradation of extracellular matrix (ECM) components and breakdown of basement membrane (BM) tissue boundaries has turned out not to be entirely correct. An action by remodelling the ECM components of the BM exposing new cryptic sites, or releasing growth factors, cytokines, or active ECM proteolysed fragments seems to be nearer to the truth. On the other hand, tissue inhibitors of gelatinase activity (TIMP-2), are involved both in the MMP-2 activation process; in concert with membrane type 1-MMP (MT1-MMP), and in the inhibition of gelatinolytic activity. Therefore proteolysis, the central step for cancer metastasis, should occur as a result of an imbalance between MMP-2 and TIMP-2. Many studies have reported the importance of this balance in patients with different malignancies, and considerable effort is currently being spent on the study of molecules that can shift the balance in favour of inhibition of MMP proteolytic activity. In this review we focus on the role of gelatinase activity in cancer invasion, addressing the following issues: how and where proteolysis occurs in cancer tissues, how it can be regulated, what the clinical implications are of the studies reported in literature so far, and finally what the future developments in this field that could have an impact on the management of patients affected by malignancies may be.  相似文献   

7.
The extracellular matrix (ECM) exists in various biochemical and structural forms that can act either as a barrier to migrating leukocytes, in the case of basement membranes, or provide a physical scaffold supporting or guiding migration (interstitial matrix). This review focuses on basement membranes and our current knowledge of the way that leukocytes transmigrate this protein barrier, with emphasis on T lymphocytes. Recent data suggest that the classical concept of cell-matrix adhesion requires revision with respect to leukocyte-ECM interactions. Whereas specific receptors may be required for leukocyte recognition of ECM molecules or three-dimensional structural domains, the role of adhesion in migration as perceived from the traditional studies of adherent cell-ECM interactions is less clear. Further, the indirect effects of ECM such as the binding and presentation of cytokines or chemotactic factors may more profoundly influence the directed migration of normally non-adherent leukocytes than the migration of adherent cells such as epithelial cells or fibroblasts. Proteases (in particular matrix metalloproteinases) released at sites of inflammation can selectively process ECM, cell surface molecules or soluble factors, which may result in the release of bioactive fragments that can function as chemoattractants for different leukocyte subsets or may modulate the activity/function of resident mesenchymal and immune cells. Current findings suggest that different leukocyte types employ different mechanisms to migrate across or through the ECM; this might be determined by the composition and organization of the ECM itself.  相似文献   

8.
Cleavage of the extracellular matrix (ECM) by proteolysis unmasks cryptic sites and generates novel fragments with biological activities functionally distinct from those of the intact ECM molecule. The laminin G-like (LG)4-5 fragment has been shown to be excised from the laminin α 4 chain in various tissues. However, the functional role of this fragment has remained unknown to date. To investigate this, we prepared α 4 LG1-3 and α 4 LG4-5 fragments by elastase digestion of recombinant α 4 LG1-5, and examined their effects on de novo adipogenesis in mice at the site of injection of basement membrane extract (Matrigel) and fibroblast growth factor (FGF)-2. Although the addition of whole α 4 LG1-5 suppressed adipogenesis to some extent, the α 4 LG4-5 fragment could strongly suppress adipogenesis at a concentration of less than 20 n m . Addition of the α 4 LG4 module, which contains a heparin-binding region, had a suppressive effect, but this was lost in mutants with reduced heparin-binding activity. In addition, antibodies against the extracellular domain of syndecan-2 and -4, which are known receptors for the α 4 LG4 module, suppressed adipogenesis. Thus, these results suggest that the cryptic α 4 LG4-5 fragment derived from the laminin α 4 chain inhibits de novo adipogenesis by modulating the effect of FGF-2 through syndecans.  相似文献   

9.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   

10.
Cells degrade extracellular matrix (ECM) barriers at focal locations by the formation of membrane protrusions called invadopodia. Polymerization of the actin cytoskeleton is critical to the extension of these processes into the ECM. We used a short interference RNA/rescue strategy to investigate the role of cortactin in the formation of Src-induced invadopodia in 3T3 fibroblasts, and subsequent degradation of the ECM. Cortactin-depleted cells did not form invadopodia or degrade the ECM. Functional invadopodia were restored in cortactin-depleted cells by expression of full-length cortactin, and fragments that contained the intact actin-binding repeats. Mutation of the three Src-targeted Tyr sites to Phe caused a loss in its rescuing ability, while mutation of the Erk phosphorylation sites had little effect on invadopodia formation. Interestingly, knock-down of cortactin did not affect the formation of lamellipodia and only slightly attenuated random cell motility. Our data shows that formation of functional invadopodia requires interaction between cortactin and filamentous actin, while interaction with SH3- and NTA-binding partners plays a less significant role. Furthermore, phosphorylation of cortactin by Src, but not by Erk, is essential for functional invadopodia formation. These results also suggest that cortactin plays a different role in invadopodia-dependent ECM degradation and lamellipodia formation in cell movement.  相似文献   

11.
12.
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.  相似文献   

13.
Structural glycoproteins such as fibronectin and laminin play a dual role in the organisation of extracellular matrix and by acting through integrins with cell surfaces. Cell-matrix interactions are crucial for the regulation of cell behaviour which depends strictly on matrix composition. Structural glycoproteins do contain cryptic sites which can be revealed during fibrillogenesis, adsorption, alteration of conformation and proteolysis. Fibronectin and laminin fragments present new properties by comparison with the native molecule. Matrix remodeling and production of matrikins were shown to be of great importance for cell differentiation and cell behaviour and in pathological conditions.  相似文献   

14.
Functional imaging of pericellular proteolysis in cancer cell invasion   总被引:5,自引:0,他引:5  
Wolf K  Friedl P 《Biochimie》2005,87(3-4):315-320
Proteolytic interactions between cells and extracellular matrix (ECM) are involved in many physiological and pathological processes, such as embryogenesis, wound healing, immune response, and cancer. The visualization of cell-mediated proteolysis towards ECM is thus required to understand basic mechanisms of tissue formation and repair, such as the breakdown and structural remodelling of ECM, inflammatory changes of tissue integrity, and the formation of proteolytic trails by moving cells. A panel of synergistic techniques for the visualization of pericellular proteolysis in live and fixed samples allow monitoring the of proteolytic tumor cell invasion in three-dimensional (3D) fibrillar collagen matrices in vitro. These include the quantification of collagenolysis by measuring the release of collagen fragments, the detection of protease expression and local activity by dequenching of fluorogenic substrate, and the staining of cleavage-associated neoepitopes together with changes in matrix structure. In combination, these approaches allow the high-resolution mapping of pericellular proteolysis towards ECM substrata including individual focal cleavage sites and the interplay between cell dynamics and alterations in the tissue architecture.  相似文献   

15.
Thrombospondin stimulates motility of human neutrophils   总被引:10,自引:1,他引:9       下载免费PDF全文
《The Journal of cell biology》1990,111(6):3077-3086
Polymorphonuclear leukocytes (PMNs) migrate to sites of inflammation or injury in response to chemoattractants released at those sites. The presence of extracellular matrix (ECM) proteins at these sites may influence PMN accumulation at blood vessel walls and enhance their ability to move through tissue. Thrombospondin (TSP), a 450-kD ECM protein whose major proteolytic fragments are a COOH-terminal 140-kD fragment and an NH2-terminal heparin-binding domain (HBD), is secreted by platelets, endothelial cells, and smooth muscle cells. TSP binds specifically to PMN surface receptors and has been shown, in other cell types, to promote directed movement. TSP in solution at low concentrations (30-50 nM) "primed" PMNs for f-Met-Leu-Phe (fMLP)- mediated chemotaxis, increasing the response two- to fourfold. A monoclonal antibody against the HBD of TSP totally abolished this priming effect suggesting that the priming activity resides in the HBD of TSP. Purified HBD retains the priming activity of TSP thereby corroborating the antibody data. TSP alone, in solution at high concentrations (0.5-3.0 microM), stimulated chemotaxis of PMNs and required both the HBD and the 140-kD fragment of TSP. In contrast to TSP in solution, TSP bound to nitrocellulose filters in the range of 20- 70 pmol stimulated random locomotion of PMNs. The number of PMNs migrating in response to bound TSP was approximately two orders of magnitude greater than the number of cells that exhibited chemotaxis in response to soluble TSP or fMLP. Monoclonal antibody C6.7, which recognizes an epitope near the carboxyl terminus of TSP, blocked migration stimulated by bound TSP, suggesting that the activity resides in this domain. Using proteolytic fragments, we demonstrated that bound 140-kD fragment, but not HBD, promoted migration of PMNs. Therefore, TSP released at injury sites, alone or in synergy with chemotactic peptides like fMLP, could play a role in directing PMN movement.  相似文献   

16.
Fibrosis is characterized by excessive accumulation of scar tissue as a result of exaggerated deposition of extracellular matrix (ECM), leading to tissue contraction and impaired function of the organ. Fibronectin (Fn) is an essential component of the ECM, and plays an important role in fibrosis. One such fibrotic pathology is that of proliferative vitreoretinopathy (PVR), a sight-threatening complication which develops as a consequence of failure of surgical repair of retinal detachment. Such patients often require repeated surgeries for retinal re-attachment; therefore, a preventive measure for PVR is of utmost importance. The contractile membranes formed in PVR, are composed of various cell types including the retinal pigment epithelial cells (RPE); fibronectin is an important constituent of the ECM surrounding these cells. Together with the vitreous, fibronectin creates microenvironments in which RPE cells proliferate. We have successfully developed a dual-action, fully human, fibronectin-specific single chain variable fragment antibody (scFv) termed Fn52RGDS, which acts in two ways: i) binds to cryptic sites in fibronectin, and thereby prevents its self polymerization/fibrillogenesis, and ii) interacts with the cell surface receptors, ie., integrins (through an attached “RGD” sequence tag), and thereby blocks the downstream cell signaling events. We demonstrate the ability of this antibody to effectively reduce some of the hallmark features of fibrosis - migration, adhesion, fibronectin polymerization, matrix metalloprotease (MMP) expression, as well as reduction of collagen gel contraction (a model of fibrotic tissue remodeling). The data suggests that the antibody can be used as a rational, novel anti-fibrotic candidate.  相似文献   

17.
Modelling cell migration strategies in the extracellular matrix   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) is a highly organised structure with the capacity to direct cell migration through their tendency to follow matrix fibres, a process known as contact guidance. Amoeboid cell populations migrate in the ECM by making frequent shape changes and have minimal impact on its structure. Mesenchymal cells actively remodel the matrix to generate the space in which they can move. In this paper, these different types of movement are studied through simulation of a continuous transport model. It is shown that the process of contact guidance in a structured ECM can spatially organise cell populations. Furthermore, when combined with ECM remodelling, it can give rise to cellular pattern formation in the form of "cell-chains" or networks without additional environmental cues such as chemoattractants. These results are applied to a simple model for tumour invasion where it is shown that the interactions between invading cells and the ECM structure surrounding the tumour can have a profound impact on the pattern and rate of cell infiltration, including the formation of characteristic "fingering" patterns. The results are further discussed in the context of a variety of relevant processes during embryonic and adult stages.  相似文献   

18.
Interphotoreceptor retinoid binding protein (IRBP) is a glycoprotein that localizes in the retina and induces inflammatory changes in this tissue in immunized animals. Certain IRBP-derived peptide determinants are also immunopathogenic, and we have previously shown that these determinants could be either immunodominant or cryptic. Lymphocytes sensitized against the cryptic peptides do not recognize whole IRBP in vitro, and yet these lymphocytes must recognize the protein in vivo to initiate the autoimmune pathogenic process. We have examined here two hypothetical explanations for this dissociation: 1) It is possible that when IRBP is processed in vitro, immunodominant peptide determinants compete with the cryptic ones and inhibit their interaction with the MHC molecules on the APC. This explanation was ruled out here by the finding that the immunodominant peptide 1179-1191 ("W10") did not inhibit the response to a cryptic one, 1158-1180 ("R4"), when added at equivalent and even moderately higher concentrations. 2) The second hypothesis proposes that the cryptic antigenic sites are not generated from IRBP by the APC in vitro, whereas enzymes in the retina digest the protein to yield fragments that generate these antigenic sites upon processing by the APC. In line with this hypothesis, we have found that cleavage of IRBP by certain endoproteinases (Asp-N, Glu-C, or V-8) produced molecules that were recognized in culture by lymphocytes sensitized to the immunopathogenic but cryptic peptide R4. This study, therefore, describes a putative Ag processing mechanism that results in IRBP recognition and, consequently, the initiation of an autoimmune process by lymphocytes sensitized against a cryptic peptide. Furthermore, experiments with R4 and other cryptic peptides have shown that cleavage fragments of up to 38 residues in length can be presented by APC, to stimulate lymphocytes sensitized against these peptides. No responses were stimulated, however, by fragments of 75 or more residues. The data thus provide new insights into the processing and presentation of cryptic peptide determinants by APC.  相似文献   

19.
We examined the interaction of ECM1 (extracellular matrix protein 1) using yeast two-hybrid screening and identified the type II transmembrane protein, PLSCR1 (phospholipid scramblase 1), as a binding partner. This interaction was then confirmed by in vitro and in vivo co-immunoprecipitation experiments, and additional pull-down experiments with GST-tagged ECM1a fragments localized this interaction to occur within the tandem repeat region of ECM1a. Furthermore, immunohistochemical staining revealed a partial overlap of ECM1 and PLSCR1 in human skin at the basal epidermal cell layer. Moreover, in human skin equivalents, both proteins are expressed at the basal membrane in a dermal fibroblast-dependent manner. Next, immunogold electron microscopy of ultrathin human skin sections showed that ECM1 and PLSCR1 co-localize in the extracellular matrix, and using antibodies against ECM1 or PLSCR1 cross-linked to magnetic immunobeads, we were able to demonstrate PLSCR1-ECM1 interaction in human skin extracts. Furthermore, whereas ECM1 is secreted by the endoplasmic/Golgi-dependent pathway, PLSCR1 release from HaCaT keratinocytes occurs via a lipid raft-dependent mechanism, and is deposited in the extracellular matrix. In summary, we here demonstrate that PLSCR1 interacts with the tandem repeat region of ECM1a in the dermal epidermal junction zone of human skin and provide for the first time experimental evidence that PLSCR1 is secreted by an unconventional secretion pathway. These data suggest that PLSCR1 is a multifunctional protein that can function both inside and outside of the cell and together with ECM1 may play a regulatory role in human skin.  相似文献   

20.
We have studied the influence of the extracellular matrix (ECM) on the amount of β-amyloid precursor protein (APP) and C-terminal amyloid-bearing fragments in 3T3 fibroblasts. After incubation with ECM components, the cellular APP content of 3T3 cells changed. Besides, different substrata including collagen, fibronectin, laminin, vitronectin, and heparin, determined changes in the amount of a C-terminal 22 kDa-fragment. The regulation of amyloidogenic fragments by the ECM was transient; in fact, when 3T3 cells were plated on tissue culture dishes coated with collagen or vitronectin, maximal levels of the 22 kDa fragment were observed 12 h after plating; in the presence of fibronectin, the maximum level of the amyloidogenic fragment was obtained 36 h after plating. These results indicate that the ECM modulates in a transient way the generation of APP-derived polypeptides containing the amyloid-β-peptide (Aβ). The ECM does not have a generalized effect on 3T3 fibroblasts, because no significant differences in cell attachment, growth rate, whole-cell polypeptide pattern, β1 integrin and α-tubulin levels were observed on cells grown on various matrix proteins. Laminin, collagen, and heparin also influence the level of an amyloidogenic fragment of 35 kDa in Neuro 2A neuronal cells, without a significant change in the neuronal marker acetylcholinesterase. In this case, however, a long-lasting response to ECM molecules was observed. These observations provide evidence that ECM molecules influence APP biogenesis, including the generation of amyloidogenic fragments containing the Aβ peptide. Our studies might prove significant to understand the localized increment of β-amyloid deposition in selected areas of the brain of Alzheimer's patients. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号