首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
Appican produced by rat C6 glioma cells, the chondroitin sulfate (CS) proteoglycan form of the amyloid precursor protein, contains an E disaccharide, -GlcUA-GalNAc(4,6-O-disulfate)-, in its CS chain. In this study, the appican CS chain from rat C6 glioma cells was shown to specifically bind several growth/differentiation factors including midkine (MK) and pleiotrophin (PTN). In contrast, the appican CS from SH-SY5Y neuroblastoma cells contained no E disaccharide and showed no binding to either MK or PTN. These findings indicate that the E motif is essential in the interaction of the appican CS chain with growth/differentiation factors, and suggest that glial appican may mediate the regulation of neuronal cell adhesion and migration and/or neurite outgrowth.  相似文献   

2.
Mammalian brains contain significant amounts of chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains. CS/DS chains isolated from embryonic pig brains (E-CS/DS) promote the outgrowth of neurites in embryonic mouse hippocampal neurons in culture by interacting with pleiotrophin (PTN), a heparin-binding growth factor. Here, we analyzed oligosaccharides isolated from E-CS/DS, which showed that octasaccharides were the minimal size capable of interacting with PTN at a physiological salt concentration. Five and eight sequences were purified from fluorescently labeled PTN-bound and -unbound octasaccharide fractions, respectively, by enzymatic digestion followed by PTN-affinity chromatography. Their sequences were determined by enzymatic digestion in conjunction with high performance liquid chromatography, revealing a critical role for oversulfated D and/or iD disaccharides in the low yet significant affinity for PTN, which is required for neuritogenesis. The critical D and iD units are GlcUA(2-O-sulfate)beta1-3GalNAc(6-O-sulfate) and IdoUA(2-O-sulfate)alpha1-3GalNAc(6-O-sulfate), respectively, where IdoUA represents L-iduronic acid. In contrast, high affinity interactions with PTN required decasaccharides with E units (GlcUAbeta1-3GalNAc(4, 6-O-disulfate)), B units (GlcUA(2-O-sulfate)beta1-3GalNAc(4-O-sulfate)), and/or their IdoUA-containing counterparts (iE and iB) in addition to D/iD units, although the biological significance of such strong interactions remains to be investigated. Thus, chain size and composition are crucial to the interaction with PTN, and PTN binds to multiple sequences in E-CS/DS chains with distinct affinity. Notably, not only heparan sulfate but also CS/DS hybrid chain structures of mammalian brains contain a high degree of microheterogeneity with a cluster of oversulfated disaccharides and appear to play roles in regulating the functions of PTN.  相似文献   

3.
Oversulfated chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid structures bind growth factors, promote the neurite outgrowth of hippocampal neurons in vitro, and have been implicated in the development of the brain. To investigate the expression of functional oversulfated DS structures in the brain, a novel monoclonal antibody (mAb), 2A12, was generated against DS (An-DS) from ascidian Ascidia nigra, which contains a unique iD disaccharide unit, iduronic acid (2-O-sulfate)alpha1-->3GalNAc(6-O-sulfate), as a predominant disaccharide. mAb 2A12 specifically reacted with the immunogen, and recognized iD-enriched decasaccharides as minimal structures. The 2A12 epitope was specifically observed in the hippocampus and cerebellum of the mouse brain on postnatal day 7, and the expression in the cerebellum disappeared in the adult brain, suggesting a spatiotemporally regulated expression of this epitope. Embryonic hippocampal neurons were immunopositive for 2A12, and the addition of the antibody to the culture medium significantly reduced the neurite growth of hippocampal neurons. In addition, two minimum 2A12-reactive decasaccharide sequences with multiple consecutive iD units were isolated from the An-DS chains, which exhibited stronger inhibitory activity against the binding of various growth factors and neurotrophic factors to immobilized embryonic pig brain CS/DS chains (E-CS/DS) than the intact E-CS/DS, suggesting that the 2A12 epitope at the neuronal surface acts as a receptor or co-receptor for these molecules. Thus, we have selected a unique antibody that recognizes iD-enriched oversulfated DS structures, which are implicated in the development of the hippocampus and cerebellum in the central nervous system. The antibody will also be applicable for investigating structural alterations in CS/DS in aging and pathological conditions.  相似文献   

4.
Chondroitin sulfate (CS) proteoglycans bind with various proteins through CS chains in a CS structure-dependent manner, in which oversulfated structures, such as iB (IdoA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate)), D (GlcA(2-O-sulfate)beta1-3GalNAc(6-O-sulfate)), and E (GlcAbeta1-3GalNAc(4,6-O-disulfate)) units constitute the critical functional module. In this study, we examined the expression and function of three CS sulfotransferases in the developing neocortex: uronyl 2-O-sulfotransferase (UST), N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (4,6-ST) and dermatan 4-O-sulfotransferase-1 (D4-ST), which are responsible for the synthesis of oversulfated structures. The CS chains of the neocortex of mouse embryos contained significant amounts of D and E units that are generated by UST and 4,6-ST, respectively. UST and 4,6-ST mRNAs were expressed in the ventricular and subventricular zones, and their expression increased during late embryonic development. In utero electroporation experiments indicated that knockdown of UST and 4,6-ST resulted in the disturbed migration of cortical neurons. The neurons electroporated with the short hairpin RNA constructs of UST and 4,6-ST accumulated in the lower intermediate zone and in the subventricular zone, showing a multipolar morphology. The cDNA constructs of UST and 4,6-ST rescued the defects caused by the RNA interference, and the neurons were able to migrate radially. On the other hand, knockdown of D4-ST, which is involved in the biosynthesis of the iB unit, caused no migratory defects. These results revealed that specific oversulfated structures in CS chains play critical roles in the migration of neuronal precursors during cortical development.  相似文献   

5.
Chondroitin sulfate (CS) proteoglycans are major components of cartilage and other connective tissues. The monoclonal antibody WF6, developed against embryonic shark cartilage CS, recognizes an epitope in CS chains, which is expressed in ovarian cancer and variably in joint diseases. To elucidate the structure of the epitope, we isolated oligosaccharide fractions from a partial chondroitinase ABC digest of shark cartilage CS-C and established their chain length, disaccharide composition, sulfate content, and sulfation pattern. These structurally defined oligosaccharide fractions were characterized for binding to WF6 by enzyme-linked immunosorbent assay using an oligosaccharide microarray prepared with CS oligosaccharides derivatized with a fluorescent aminolipid. The lowest molecular weight fraction recognized by WF6 contained octasaccharides, which were split into five subfractions. The most reactive subfraction contained several distinct octasaccharide sequences. Two octasaccharides, DeltaD-C-C-C and DeltaC-C-A-D (where A represents GlcUAbeta1-3GalNAc(4-O-sulfate), C is GlcUAbeta1-3Gal-NAc(6-O-sulfate), D is GlcUA(2-O-sulfate)beta1-3GalNAc(6-O-sulfate), DeltaCis Delta(4,5)HexUAalpha1-3GalNAc(6-O-sulfate), and DeltaDis Delta(4,5)HexUA(2-O-sulfate)alpha1-3GalNAc(6-O-sulfate)), were recognized by WF6, but other related octasaccharides, DeltaC-A-D-C and DeltaC-C-C-C, were not. The structure and sequences of both the binding and nonbinding octasaccharides were compared by computer modeling, which revealed a remarkable similarity between the shape and distribution of the electrostatic potential in the two different octasaccharide sequences that bound to WF6 and that differed from the nonbinding octasaccharides. The strong similarity in structure predicted for the two binding CS octasaccharides (DeltaD-C-C-C and DeltaC-C-A-D) provided a possible explanation for their similar affinity for WF6, although they differed in sequence and thus form two specific mimetopes for the antibody.  相似文献   

6.
Thrombomodulin (TM) is an integral membrane glycoprotein, which occurs as both a chondroitin sulfate (CS) proteoglycan (PG) form (β-TM) and a non-PG form without a CS chain (α-TM) and hence is a part-time PG. An α-TM preparation isolated from human urine contained the glycosaminoglycan linkage region tetrasaccharide GlcUAβ1-3Galβ1-3Galβ1-4xylose, and the nonreducing terminal GlcUA residue is 3-O-sulfated. Because the human natural killer-1 sulfotransferase (HNK-1ST) transfers a sulfate group from 3'-phosphoadenosine 5'-phosphosulfate to the C-3 position of the nonreducing terminal GlcUA residue in the HNK-1 antigen precursor trisaccharide, GlcUAβ1-3Galβ1-4GlcNAc, the sulfotransferase activity toward the linkage region was investigated. In fact, the activity of HNK-1ST toward the linkage region was much higher than that toward the glucuronylneolactotetraosylceramide, the precursor of the HNK-1 epitope. HNK-1ST may be responsible for regulating the sorting of α- and β-TM. Furthermore, HNK-1ST also transferred a sulfate group from 3'-phosphoadenosine 5'-phosphosulfate to the C-3 position of the nonreducing terminal GlcUA residue of a chondroitin chain. Intriguingly, the HNK-1 antibody recognized CS chains and the linkage region if they contained GlcUA(3-O-sulfate), suggesting that HNK-1ST not only synthesizes the HNK-1 epitope but may also be involved in the generation of part-time PGs.  相似文献   

7.
8.
The structure of the linkage region of chondroitin sulfate chains attached to the hybrid proteoglycans of the Engelbreth-Holm-Swarm mouse tumor was investigated. The peptidoglycan fraction which contains oversulfated chondroitin sulfate rich in the GlcA beta 1-3GalNAc-4,6-diO-sulfate unit and undersulfated heparan sulfate rich in GlcA beta 1-4GlcNAc and GlcA beta 1-4GlcN-2N-sulfate units was isolated after exhaustive protease digestion of the acetone powder of the tumor tissue, (GlcA, glucuronic acid; GalNAc, 2-deoxy-2-N-acetylamino-D-galactose). Glycosaminoglycans were released by beta-elimination using NaB3H4 and digested with chondroitinase ABC. The linkage region fraction was separated from heparan sulfate by gel filtration and fractionated by HPLC on an amine-bound silica column. Six radiolabeled compounds (L1-L6) were obtained and structurally analyzed by cochromatography with authentic hexasaccharide alditols recently isolated by us from the linkage region, and by digestion using chondroitinase ACII, alkaline phosphatase and beta-galactosidase in conjugation with HPLC. These compounds shared the conventional hexasaccharide backbone structure: delta GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl-ol, (delta GlcA, delta 4.5-GlcA or D-gluco-4-enepyranosyluronic acid). L1 was not sulfated or phosphorylated. L2 and L4 were monosulfated at C-6 and C-4 of the GalNAc residue, respectively. Upon alkaline phosphatase digestion, L3, L5 and L6 were converted to L1, L2 and L4, respectively. Analysis of the periodate oxidation products indicated that the phosphate group in L3, L5 and L6 is located at C-2 of Xyl-ol. These results suggest that Xyl-2-O-phosphate is associated with both 4-O-sulfated and 6-O-sulfated GalNAc units and does not directly determine the sulfation pattern of chondroitin sulfate.  相似文献   

9.
Accumulating evidence suggests the involvement of chondroitin sulfate (CS) and dermatan sulfate (DS) hybrid chains in the brain's development and critical roles for oversulfated disaccharides and IdoUA residues in the growth factor-binding and neuritogenic activities of these chains. In the pursuit of sources of CS/DS with unique structures, neuritogenic activity, and therapeutic potential, two novel CS/DS preparations were isolated from shark liver by anion exchange chromatography. The major (80%) low sulfated and minor (20%) highly sulfated fractions had an average molecular mass of 3.8-38.9 and 75.7 kDa, respectively. Digestion with various chondroitinases (CSases) revealed a large panel of disaccharides with either GlcUA or IdoUA scattered along the polysaccharide chains in both of the fractions. The higher M(r) fraction, richer in IdoUA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate) and GlcUAbeta/IdoUAalpha1-3GalNAc(4,6-O-disulfate) units, exerted greater neurite outgrowth-promoting (NOP) activity and better promoted the binding of various heparin-binding growth factors, including pleiotrophin (PTN), midkine, recombinant human heparin-binding epidermal growth factor-like growth factor, VEGF(165), fibroblast growth factor-2, fibroblast growth factor-7, and hepatocyte growth factor (HGF). These activities were largely abolished by digestion with CSase ABC or B but only moderately affected by a mixture of CSases AC-I and AC-II. In addition, the NOP activity of the larger fraction was markedly reduced by desulfation with alkali, suggesting a role for the 2-O-sulfate of IdoUA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate). The NOP activity of the higher molecular weight fraction and that of the embryonic pig brain-derived CS/DS fraction were also sup pressed to a large extent by antibodies against HGF, PTN, and their individual receptors cMet and anaplastic lymphoma kinase, revealing the involvement of the HGF and PTN signaling pathways in the activity.  相似文献   

10.
Chondroitin and dermatan sulfate (CS and DS) chains were isolated from bovine tracheal cartilage and pig intestinal mucosal preparations and fragmented by enzymatic methods. The oligosaccharides studied include a disaccharide and hexasaccharides from chondroitin ABC lyase digestion as well as trisaccharides already present in some commercial preparations. In addition, other trisaccharides were generated from tetrasaccharides by chemical removal of nonreducing terminal residues. Their structures were examined by high-field 1H and 13C NMR spectroscopy, after reduction using sodium borohydride. The main hexasaccharide isolated from pig intestinal mucosal DS was found to be fully 4-O-sulfated and have the structure: DeltaUA(beta1-3)GalNAc4S(beta1-4)L-IdoA(alpha1-3)GalNAc4S(beta1-4)L-IdoA(alpha1-3)GalNAc4S-ol, whereas one from bovine tracheal cartilage CS comprised only 6-O-sulfated residues and had the structure: DeltaUA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S-ol. No oligosaccharide showed any uronic acid 2-sulfation. One novel disaccharide was examined and found to have the structure: GalNAc6S(beta1-4)GlcA-ol. The trisaccharides isolated from the CS/DS chains were found to have the structures: DeltaUA(beta1-3)GalNAc4S(beta1-4)GlcA-ol and DeltaUA(beta1-3)GalNAc6S(beta1-4)GlcA-ol. Such oligosaccharides were found in commercial CS/DS preparations and may derive from endogenous glucuronidase and other enzymatic activity. Chemically generated trisaccharides were confirmed as models of the CS/DS chain caps and included: GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc4S-ol and GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S-ol. The full assignment of all signals in the NMR spectra are given, and these data permit the further characterization of CS/DS chains and their nonreducing capping structures.  相似文献   

11.
Squid cartilage chondroitin sulfate E (CS-E) exhibits various biological activities, including anticoagulant activities, lymphoid regulatory activities, and neuroregulatory activities [Ueoka, C., Kaneda, N., Okazaki, I., Nadanaka, S., Muramatsu, T., and Sugahara, K. (2000) J. Biol. Chem. 275, 37407-37413]. These activities are expressed through molecular interactions with specific proteins, including heparin cofactor II, selectins, CD44, chemokines, and the heparin-binding growth factor midkine. Hence, the sugar sequence information is essential for a better understanding of the CS-E functions. Previously, several novel tetrasaccharides containing the unreported 3-O-sulfated glucuronic acid (GlcA) were isolated after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, hexasaccharides were isolated to obtain more detailed sequence information, especially around the GlcA(3-O-sulfate) residue, and were characterized by fast atom bombardment mass spectrometry and 500 or 600 MHz (1)H NMR spectroscopy. The findings demonstrate one tetrasulfated and five pentasulfated hexasaccharide sequences, five of them being novel. They were composed of three disaccharide building units of either A [GlcA(beta1-3)GalNAc(4-O-sulfate)], E [GlcA(beta1-3)GalNAc(4,6-O-disulfate)], K [GlcA(3-O-sulfate)(beta1-3)GalNAc(4-O-sulfate)], L [GlcA(3-O-sulfate)(beta1-3)GalNAc(6-O-sulfate)], or M [GlcA(3-O-sulfate)(beta1-3)GalNAc(4,6-O-disulfate)], forming E-A-A, M-A-A, K-L-A, E-E-A, K-K-A, and A-M-A hexasaccharide sequences. The K-L tetrasaccharide sequence is to date unreported. The isolated sequences appear to indicate the occurrence of an unreported GlcA 3-O-sulfotransferase specific for chondroitin sulfate. The obtained sequence information will be useful for investigating the structure-function relationship and biosynthesis of CS-E.  相似文献   

12.
Brain-specific chondroitin sulfate (CS) proteoglycan (PG) DSD-1-PG/6B4-PG/phosphacan isolated from neonatal mouse brains exhibits neurite outgrowth-promoting activity toward embryonic rat and mouse hippocampal neurons in vitro through the so-called DSD-1 epitope embedded in its glycosaminoglycan side chains. Oversulfated CS variants, CS-D from shark cartilage and CS-E from squid cartilage, also possess similar activities. We have proposed that the neuritogenic property of the DSD-1 epitope may be attributable to a distinct CS structure characterized by the disulfated D disaccharide unit [GlcUA(2S)-GalNAc(6S)]. In this study, we assessed neuritogenic potencies of various oversulfated dermatan sulfate (DS) preparations purified from hagfish notochord, the bodies of two kinds of ascidians and embryonic sea urchin, which are characterized by the predominant disulfated disaccharide units of [IdoUA-GalNAc(4S,6S)] (68%), [IdoUA(2S)-GalNAc(4S)] (66%) plus [IdoUA(2S)-GalNAc(6S)] (5%), [IdoUA(2S)-GalNAc (6S)] (>90%), and [IdoUA-GalNAc(4S,6S)] (74%), respectively. They exerted marked neurite outgrowth-promoting activities, resulting in distinct morphological features depending on the individual structural features. Such activities were not observed for a less sulfated DS preparation derived from porcine skin, which has a monosulfated disaccharide unit [IdoUA-Gal-NAc(4S)] as a predominant unit. The neurite outgrowth-promoting activities of these oversulfated DS preparations and DSD-1-PG were eliminated by the specific enzymatic cleavage of GalNAc-IdoUA linkages characteristic of DS using chondroitinase B. In addition, chemical analysis of the glycosaminoglycan side chains of DSD-1-PG revealed the DS-type structures. These observations suggest potential novel neurobiological functions of oversulfated DS structures and may reflect the physiological neuritogenesis during brain development by mammalian oversulfated DS structures exemplified by the DSD-1 epitope.  相似文献   

13.
14.
The heparin-binding neurotrophic factor midkine (MK) has been proposed to mediate neuronal cell adhesion and neurite outgrowth promotion by interacting with cell-surface heparan sulfate. We have observed that over-sulfated chondroitin sulfate (CS) D and CS-E show neurite outgrowth-promoting activity in embryonic day (E) 18 rat hippocampal neurons (Nadanaka, S., Clement, A., Masayama, K., Faissner, A., and Sugahara, K. (1998) J. Biol. Chem. 273, 3296-3307). In the present study, various CS isoforms were examined for their ability to inhibit the MK-mediated cell adhesion of cortical neuronal cells in comparison with heparin from porcine intestine and heparan sulfate from bovine kidney. E17-18 rat cortical neuronal cells were cultured on plates coated with recombinant MK in a grid pattern. The cells attached to and extended their neurites along the MK substratum. Cell adhesion was inhibited by squid cartilage over-sulfated CS-E as well as by heparin, but not by heparan sulfate or other CS isoforms. Direct interactions of MK with various glycosaminoglycans were then evaluated using surface plasmon resonance, showing that CS-E bound MK as strongly as heparin, followed by other over-sulfated CS isoforms, CS-H and CS-K. Furthermore, E18 rat brain extracts showed an E disaccharide unit, GlcUAbeta1-3GalNAc(4,6-O-disulfate). These findings indicate that CS chains containing the E unit as well as heparin-like glycosaminoglycans may be involved in the expression and/or modulation of the multiple neuroregulatory functions of MK such as neuronal adhesion and migration and promotion of neurite outgrowth.  相似文献   

15.
Chondroitin sulfate proteoglycans (CS-PG) are involved in the regulation of the central nervous system in vertebrates due to their presence on cell surfaces and in the extracellular matrix of tissues. The CS moieties are built up from repeating -4)GlcA(beta1-3)GalNAc(beta1- disaccharide units, partly O-sulfated at different positions. The presence of the disulfated disaccharide D-unit, GlcA2S(beta1-3)GalNAc6S, in the CS moiety of the proteoglycan DSD-1-PG/phosphacan, correlates with neurite outgrowth promotion. The binding of monoclonal antibody (mAb) 473HD to DSD-1-PG, reducing neuronal stimulation, is inhibited by shark cartilage CS-D. CS-D is also recognized by two other mAbs, MO-225 and CS-56. Conformational studies were performed using NMR spectroscopy and molecular modeling on five octasaccharides isolated from shark cartilage CS-D. These octasaccharides present different binding properties toward the three mAbs. The combination of the experimental and theoretical approaches revealed that the sulfate group at position 2 of GlcA in disaccharide D and the presence of an exocyclic negative tail in disaccharides C [GlcA(beta1-3)GalNAc6S] and DeltaC [Delta4,5HexA(alpha1-3)GalNAc6S] are important for antibody recognition.  相似文献   

16.
A preparation of porcine stage 14 intestinal heparin, which contains Ser as a predominant amino acid, was used for isolation of the carbohydrate-protein linkage region of heparin. Two glycoserines were isolated in a molar ratio of 96:4 after an exhaustive digestion with a mixture of bacterial heparinase and heparitinases. Their structures were determined by composition analysis, heparitinase digestion, co-chromatography with an authentic glycoserine on high performance liquid chromatography, and by 500-MHz one- and two-dimensional 1H NMR spectroscopy. The structure of the major one is delta GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser and that of the minor is delta GlcA beta 1-4GlcNAc(6-O-sulfate) alpha 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser. The novel 6-O-sulfated GlcNAc residue was demonstrated to occur in the vicinity of the carbohydrate-protein linkage region. The Gal residues were nonsulfated, in contrast to the sulfated Gal structures recently discovered in the carbohydrate-protein linkage region of chondroitin sulfate proteoglycans. The structural features are discussed in relation to biosynthetic mechanisms of the heparin glycosaminoglycans.  相似文献   

17.
6-O-Sulfated galactose residues have been demonstrated in the glycosaminoglycan-protein linkage region GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser isolated from shark cartilage chondroitin 6-sulfate (Sugahara, K., Ohi, Y., Harada, T., de Waard, P., and Vliegenthart, J. F. G. (1992) J. Biol. Chem. 267, 6027-6035). In this study, we investigated whether a recombinant human chondroitin 6-sulfotransferase-1 (C6ST-1) catalyzes the sulfation of C6 on both galactose residues in the linkage region using structurally defined acceptor substrates. The C6ST-1 was expressed as a soluble protein A chimeric form in COS-1 cells and purified using IgG-Sepharose. The purified C6ST-1 utilized the linkage tri-, tetra-, penta-, and hexasaccharide-serines and hexasaccharide alditols, including GlcUAbeta1-3GalNAc(4-O-sulfate)beta1-4GlcUAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xylbeta1-O-Ser and DeltaGlcUAbeta1-3GalNAc(6-O-sulfate)beta1-4GlcUAbeta1-3Galbeta1-3Gal(6-O-sulfate)beta1-4Xyl-ol. Identification of the reaction products obtained with the linkage tetra-, penta-, and hexasaccharide-serines revealed that the C6ST-1 catalyzed the sulfation of C6 on both galactose residues in the linkage region. Notably, the linkage tetrasaccharide-peptide GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-(Gly)Ser-(Gly-Glu) was a good acceptor substrate for the C6ST-1, suggesting that the sulfation of the galactose residues can occur before the transfer of the first N-acetylhexosamine residue to the linkage tetrasaccharide. In contrast, no incorporation was observed into DeltaGlcUAbeta1-3GalNAc(4-O-sulfate)beta1-4GlcUAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xyl-ol, indicating that an intact xylose is necessary for the transfer of a sulfate to the second sugar residue Gal from the reducing end. These findings clearly demonstrated that the recombinant C6ST-1 catalyzes the sulfation of C6 on both galactose residues in the linkage region in vitro. This is the first identification of the sulfotransferase responsible for the sulfation of galactose residues in the glycosaminoglycan-protein linkage region.  相似文献   

18.
19.
Oversulfated chondroitin sulfate H (CS-H) isolated from hagfish notochord is a unique dermatan sulfate consisting mainly of IdoAalpha1-3GalNAc(4S,6S), where IdoA, GalNAc, 4S and 6S represent L-iduronic acid, Nacetyl-D-galactosamine, 4-O-sulfate and 6-O-sulfate, respectively. Several tetra- and hexasccharide fractions were isolated from CS-H after partial digestion with bacterial chondroitinase B to investigate the sequential arrangement of the IdoAalpha1-3GalNAc(4S,6S) unit in the CS-H polysaccharide. A structural analysis of the isolated oligosaccharides by enzymatic digestions, mass spectrometry and 1H NMR spectroscopy demonstrated that the major tetrasaccharides shared the common disulfated core structure delta4,5HexAalpha1-3GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc (4S) with 0 approximately 3 additional O-sulfate groups, where delta4,5HexA represents 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid. The major hexasaccharides shared the common trisulfated core structure delta4,5HexAalpha1-3 GalNAc(4S)beta1-4 IdoAalpha1-3 GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc(4S) with 1 approximately 4 additional O-sulfate groups. Some extra sulfate groups in both tetra- and hexasaccharides were located at the C-2 position of a delta4,5HexA or an internal IdoA residue, or C-6 position of 4-O-sulfated GalNAc residues, forming the unique disulfated or trisulfated disaccharide units, IdoA (2S)-GalNAc(4S), IdoA-GalNAc(4S,6S) and IdoA (2S)-GalNAc(4S,6S), where 2S represents 2-O-sulfate. Of the demonstrated sequences, five tetra- and four hexasaccharide sequences containing these units were novel.  相似文献   

20.
The variation in the sulfation profile of chondroitin sulfate (CS)/dermatan sulfate (DS) chains regulates central nervous system development in vertebrates. Notably, the disulfated disaccharide D-unit, GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate), correlates with the promotion of neurite outgrowth through the DSD-1 epitope that is embedded in the CS moiety of the proteoglycan DSD-1-PG/phosphacan. Monoclonal antibody (mAb) 473HD inhibits the DSD-1-dependent neuritogenesis and also recognizes shark cartilage CS-D, which is characterized by the prominent D-unit and is also recognized by two other mAbs, CS-56 and MO-225. We investigate the oligosaccharide epitope structures of these CS-D-reactive mAbs by ELISA and oligosaccharide microarrays using lipid-derivatized CS oligosaccharides. CS-56 and MO-225 recognized the octa- and larger oligosaccharides, though the latter also bound one unique hexasaccharide D-A-D, where A denotes the disaccharide A-unit GlcUA-GalNAc(4-O-sulfate). The octasaccharides reactive with CS-56 and MO-225 shared a core A-D tetrasaccharide, whereas the neighboring structural elements located on the reducing and/or nonreducing sides of the A-D gave a differential preference additionally to the recognition sequence for each antibody. In contrast, 473HD reacted with multiple hexa- and larger oligosaccharides, which also contained A-D or D-A tetrasaccharide sequences. Consistent with the distinct specificity of 473HD as compared with CS-56 and MO-225, the 473HD epitope displayed a different expression pattern in peripheral mouse organs as revealed by immunohistology, extending the previously reported CNS-restricted expression. The epitope of 473HD, but not of CS-56 or MO-225, was eliminated from DSD-1-PG by digestion with chondroitinase B, suggesting the close association of L-iduronic acid with the 473HD epitope. Despite such supplemental information, the integral epitope remains to be isolated for identification and comprehensive analytical characterisation. Thus novel information on the sugar sequences containing the A-D tetrasaccharide core was obtained for the epitopes of these three useful mAbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号