首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Jatropha curcas is a drought-resistant tree whose seeds are a good source of oil that can be used for producing biodiesel. A successful crop establishment depends on a rapid and uniform germination of the seed. In this work we aimed to characterize the responses of J. curcas seeds to temperature and water availability, using thermal time and hydrotime analysis,

Methods

Thermal and hydrotime analysis was performed on germination data obtained from the incubation of seeds at different temperatures and at different water potentials.

Key Results

Base and optimum temperatures were 14·4 and 30 °C, respectively. Approximately 20 % of the seed population displayed absolute dormancy and part of it displayed relative dormancy which was progressively expressed in further fractions when incubation temperatures departed from 25 °C. The thermal time model, but not the hydrotime model, failed to describe adequately final germination percentages at temperatures other than 25 °C. The hydrotime constant, θH, was reduced when the incubation temperature was increased up to 30 °C, the base water potential for 50 % germination,Ψb(50), was less negative at 20 and 30 °C than at 25 °C, indicating either expression or induction of dormancy. At 20 °C this less negative Ψb(50) explained satisfactorily the germination curves obtained at all water potentials, while at 30 °C it had to be corrected towards even less negative values to match observed curves at water potentials below 0. Hence, Ψb(50) appeared to have been further displaced to less negative values as exposure to 30 °C was prolonged by osmoticum. These results suggest expression of dormancy at 20 °C and induction of secondary dormancy above 25 °C. This was confirmed by an experiment showing that inhibition of germination imposed by temperatures higher than 30 °C, but not that imposed at 20 °C, is a permanent effect.

Conclusions

This study revealed (a) the extremely narrow thermal range within which dormancy problems (either through expression or induction of dormancy) may not be encountered; and (b) the high sensitivity displayed by these seeds to water shortage. In addition, this work is the first one in which temperature effects on dormancy expression could be discriminated from those on dormancy induction using a hydrotime analysis.  相似文献   

2.
Nondormant A. caudatus seeds germinated in the darkat temperatures between 20 and 35° but not at 45 °C.Incubation at this temperature for at least 10 h inhibited seedgermination over the temperature range 20 to 35 °C,temperatures previously suitable for germination. Thus incubation at 45°C induced secondary dormancy. Mechanical or chemicalscarification or exposure to pure oxygen caused complete or almost completegermination of dormant seeds although more slowly in comparison to nondormantseeds. Secondary dormant scarified seeds required a lower concentration of ABAthan nondormant seeds to inhibit germination. The high temperature, whichinduced dormancy, 45 °C, caused the seed coat to be partiallyresponsible for secondary dormancy. Involvement of ABA (synthesis orsensitivity) in the induction and/or maintenance of this dormancy should beconsidered.  相似文献   

3.
Seed dormancy and germination characteristics are important factors determining plant reproductive success. In this study, we aimed to explore the characteristics of seed dormancy and germination of two endemic Labiatae species (Lamiophlomis rotata and Marmoritis complanatum) in the Himalaya–Hengduan Mountains. Germination was first tested in the light using freshly matured seeds at 25/15 and 15/5°C, and then again after dry after-ripening. Dried seeds were incubated in the light at a range of constant temperatures (1–35°C). The effects of dark and GA3 on germination were tested at several different temperatures. Base temperature (Tb) and thermal times for 50% final germination (θ50) were calculated. Seeds were also buried at the collection site to test seed persistence in the soil. Increased final germination after dry after-ripening indicated that the seeds of the two species exhibited non-deep physiological dormancy; however, they exhibited different germination characteristics and soil seed bank types. In L. rotata, GA3 only promoted germination at 5°C, producing no significant effect at other temperatures. Dark conditions decreased germination significantly at all temperatures. Tb and θ50 values were 0.6 and 82.7°C d. The soil seed bank of this species was classified as persistent. In M. complanatum, GA3 significantly promoted germination at all temperatures except 15°C. Dark conditions depressed germination significantly at warmer temperatures (20 and 25°C) but had no effect at lower temperatures. Tb and θ50 values were 0.1 and 92.3°C d. The soil seed bank was classified as transient. Our results suggest that the seed dormancy and germination of the two co-existing species share some commonalities but there are also species-specific adaptations to the harsh alpine environment.  相似文献   

4.
Abstract. Several short daily R irradiations are required from the first day of incubation on water to induce germination of Kalanchoë seeds. When the same light treatment is given after a prolonged dark incubation period at 20°C, secondary dormancy prevents germination. Factors controlling the induction and breaking of secondary dormancy have been investigated. The induction of secondary dormancy is very temperature dependent. Locally puncturing the seed coat strongly delays it. Secondary dormancy is not induced in the presence of GA3 during the first 10 d of dark incubation, although this growth substance cannot induce dark germination. Prolonged or cyclic daily R irradiations can relieve secondary dormancy of seeds kept on water, even after a dark period of 20 d. A 24 h treatment at 4°C restores responsiveness to short R exposures of slightly secondarily dormant seeds. The synergism between GA3 and Pfr in non-dormant Kalanchoë seeds, leading to high effectiveness of even one short FR irradiation, still occurs in seeds made secondarily dormant before transfer to GA3, but more R or FR irradiations, in combination with GA3, are required for the release of secondary dormancy. A combination of red light and 6-benzyl-aminopurine is ineffective in removing dormancy.  相似文献   

5.
In this study, we show that seeds of Ilex maximowicziana collected from northern and southern Taiwan differ in germination responses to temperature. Seeds produced by plants growing in the tropical environment of southern Taiwan were more responsive (in a positive way) to higher incubation temperatures than those produced by plants growing in the subtropical environment of northern Taiwan. On the other hand, seeds produced in northern Taiwan were more responsive (in a positive way) to low incubation temperatures and to cold stratification than those from southern Taiwan. Germination percentages and rates of seeds from northern Taiwan were higher at 20/10°C than at 30/20°C, reaching a plateau of >80% germination after 12 weeks incubation, whereas germination of seeds from southern Taiwan reached >80% at 30/20 and 25°C but not at 20/10°C. Gibberellic acid (GA3) increased germination rate but not germination percentage of seeds from both southern and northern Taiwan. Freshly matured seeds of I. maximowicziana have rudimentary embryos. During dormancy break, embryo length increased 11.5- and 8.0-fold in northern and southern seeds, respectively, before radicle emergence. Thus, seeds of Ilex maximowicziana have nondeep simple morphophysiological dormancy. This is the first detailed study of the germination requirements of a subtropical/tropical species of the large cosmopolitan genus Ilex.  相似文献   

6.
Dodonaea viscosa (Sapindaceae) is widespread in the mountainous highlands of the southwestern part of Kingdom of Saudi Arabia, where it is a medicinally important species for the people in Saudi Arabia. Seeds of this species were collected from Mount Atharb in Al-Baha region, at an altitude of 2100 m. The aims of this study were to determine if the seeds of D. viscosa have physical dormancy (i.e. a water-impermeable seed coat) and, if so, what treatments would break dormancy, and what conditions promote germination after dormancy has been broken. The dormancy-breaking treatments included: soaking of seeds in concentrated sulfuric acid (H2SO4) for 10 min, immersion in boiling water for 10 min and exposure to 50 °C for 1 min. After seeds had been pre-treated with H2SO4, to break dormancy, they were incubated at constant temperatures from 5 to 35 °C, under 12-h photoperiods or in continuous darkness, and germination recorded. Salinity tolerance was investigated by incubating acid-scarified seeds in different concentrations of mM NaCl in the light at 25 °C.Untreated seeds had low final germination 30%. Seeds that had been acid-scarified, immersed in boiling water or exposed to 50 °C all achieved 91% subsequently when incubated at 25 °C. Thus, seeds of this species in Saudi Arabia have physical dormancy, which can be broken by all three treatments designed to increase the permeability of the testa. After pre-treatment, there was a broad optimum constant temperature for germination that ranged between 5 and 25 °C but germination was inhibited by higher temperatures (30 and 35 °C). Light had little effect on this germination response. Scarified seeds were also sensitive to salinity, with the highest germination in distilled water and complete inhibition in 400 mM NaCl. Seeds that failed to germinate in saline treatments were mostly able to germinate on transfer to distilled water, suggesting osmotic inhibition.  相似文献   

7.
Milk thistle (Silybum marianum) is a medicinal plant; however, lack of consistency in past dormancy studies has hindered propagation of this species from seeds. We tested the germination responses of freshly harvested and after-ripened (stored for 2 and 7 months; 25°C at 50% relative humidity) seeds from three populations (P1, P2 and P3) in Iran at varying constant or alternating temperatures, with or without GA3 and in light and continuous darkness. No germination occurred in freshly harvested seeds incubated at any condition without GA3 application, indicating that all the seeds were dormant. Seeds from P1 and P2, which developed under relatively dry, warm conditions, germinated over a wider range of temperatures after 2 months of dry storage, indicating type 6 of non-deep physiological dormancy (PD). Seeds from P3, which developed under relatively wet, cool conditions, incubated at constant temperatures (especially on GA3), exhibited an increase in maximum temperature for germination, indicating type 1 of non-deep PD. Light improved germination of after-ripened seeds, and GA3 application substituted for the light requirement for germination. This is the first report that environmental conditions during seed development may be correlated with differences in the type of non-deep PD. We conclude that milk thistle seeds are positively photoblastic and photodormant and the germination responses of after-ripened seeds from different populations are different under darkness. Therefore, the impacts of genetic differences and maternal effects on the induction of dormancy during seed development should be considered in attempts to domesticate this medicinal plant.  相似文献   

8.
Two brief red (R) irradiations, separated by 24 hours, given to Kalanchoë blossfeldiana Poelln. cv Feuerblüte seeds, made secondarily dormant by a prolonged dark incubation period on water and transferred to GA3, induce very low germination. Some effect of these irradiations is preserved, however, during a long dark interval in fully imbibed seeds and greatly increases the germination induced by another brief R exposure. This long-lasting light effect is, at 20°C, only lost after a dark interval of about 1 month. It can also be induced by two brief far-red (FR) exposures. Its preservation is temperature-dependent, low temperatures being favorable. Light-induced changes in the ATP-content were demonstrated during preservation and expression of the long-lasting light effect, indicating a long-lasting metabolic change. In seeds with primary dormancy sown on GA3, an analogous long-lasting light effect is induced by one or two brief R or FR irradiations, even when they are given before germination can take place. The presence of GA3, which was shown to induce a very low fluence germination response in Kalanchoë seeds, is required for the occurrence of the long-lasting light effect. The data suggest long-term preservation of some effect(s) of Pfr rather than persistent presence of Pfr itself.  相似文献   

9.

Background and Aims

Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy.

Methods

The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared.

Key Results

Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments.

Conclusions

Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter.Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological dormancy, secondary dormancy, seed germination  相似文献   

10.
The effect of temperature on the level of dormancy of primary and secondary dormant Carex pendula and Carex remota seeds was investigated. Primary dormant and secondary dormant seeds were stratified for 4 weeks at 5, 11, 13, and 15 °C, respectively, and tested for germination at 15/5 °C in light. To obtain secondary dormant seeds, primary dormant seeds were stratified at 5 °C and afterwards at 25 °C for 4 weeks. Germination tests were carried out in water and in 25 μmol KNO3-solution to examine differences in sensitivity to nitrate between seeds relieved from primary and secondary dormancy. In both species, seeds with primary and with induced secondary dormancy showed no significant differences in germination. The two sedges showed significant differences in the effect of stratification temperatures between primary and secondary dormant seeds. Primary dormant seeds of C. pendula showed high germination (>80%) in nitrate-solution after stratification at all temperatures, while only temperatures of 5, 11, and 13 °C led to higher germination in nitrate-solution in secondary dormant seeds. Germination percentages of primary and of secondary dormant C. pendula seeds in water increased to a higher extent only after stratification at 5 and 11 °C; stratification of 11 °C was more effective in secondary than in primary dormant seeds. The only temperature that relieved primary dormancy in C. remota seeds was 5 °C where germination in water and nitrate-solution was >90%. Germination of secondary dormant seeds was increased by stratification at 11 °C independent of the test solution but higher germination after stratification at 13 °C occurred only in nitrate-solution. The results support the existence of physiological differences in the regulation of primary and secondary dormancy by temperature, and in the reaction of nitrate, at least in C. remota.  相似文献   

11.
Factors controlling the establishment and removal of secondary dormancy in Chenopodium bonus-henricus L. seeds were investigated. Unchilled seeds required light for germination. A moist-chilling treatment at 4 C for 28 to 30 days removed this primary dormancy. Chilled seeds now germinated in the dark. When chilled seeds were held in the dark in −8.6 bars polyethylene glycol 6000 solution at 15 C or in water at 29 C a secondary dormancy was induced which increased progressively with time as determined by subsequent germination. These seeds now failed to germinate under the condition (darkness) which previously allowed their germination. Continuous light or daily brief red light irradiations during prolonged imbibition in polyethylene glycol solution at 15 C or in water at 29 C prevented the establishment of the secondary dormancy and caused an advancement of subsequent germination. Far red irradiations immediately following red irradiation reestablished the secondary dormancy indicating phytochrome participation in “pregerminative” processes. The growth regulator combination, kinetin + ethephon + gibberellin A4+A7 (GA4+7), and to a relatively lesser extent GA4+7, was effective in preventing the establishment of the secondary dormancy and in advancing the germination or emergence time. Following the establishment of the secondary dormancy by osmotic or high temperature treatments the regulator combination was relatively more active than light or GA4+7 in removing the dormancy. Prolonged dark treatment at 29 C seemed to induce changes that were partially independent of light or GA4+7 control. The data presented here indicate that changes during germination preventing dark treatment determine whether the seed will germinate, show an advancement effect, or will become secondarily dormant. These changes appear to be modulated by light and hormones.  相似文献   

12.
The effect of environmental conditions during storage and imbibition on germination was investigated in field pennycress (Thlaspi arvense L.), a weed species that can behave as a winter or a summer annual. Freshly harvested seeds of an inbred line with a cold requirement for flowering exhibited primary dormancy that was rapidly lost following 1 month of afterripening in a dry state. Nondormant seeds were positively photoblastic. The light effect was mediated through phytochrome since germination was promoted by red light and inhibited by far red light. Seedling emergence was also inhibited by light filtered through a canopy of wheat leaves. Germination of field pennycress seeds was considerably more sensitive to moisture stress than two sympatric species, wild oat (Avena fatua L.) and wheat (Triticum aestivum L., cv. ERA). Seeds of the latter two species were chosen in order to compare the effect of water potential on germination in field pennycress with that in sympatric species. It was concluded that the major environmental factor limiting nondormant field pennycress seeds on the soil surface was water availability. Imbibition of fully afterripened seeds at low temperatures (6 C) induced a deep secondary dormancy. In contrast to primary dormancy, cold-induced dormancy was not alleviated by red light, alternating temperatures (21/5 C), or 2 months of dry storage at 6, 15, or 35 C. However, exogenous gibberellin A3 or 24 weeks of dry storage resulted in germination in cold-induced dormant seeds. Secondary dormancy was not observed in fully afterripened seeds that were preincubated at 21 C for 1 or 2 days prior to the cold treatment. These results may explain the failure in field experiments to observe the cold-induced secondary dormancy that limits spring emergence in other winter annuals (J. Baskin, C. Baskin, Weed Res. 1979 19: 285–292).  相似文献   

13.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

14.
Effects of dark incubation at different temperatures were studied on dormancy and respiratory activity of seeds of Sisymbrium officinale (L.) Scop. Because germination of this species absolutely depends on the simultaneous action of light and nitrate, changes in dormancy could be studied in darkness without the interference of early germination events. Upon the start of incubation rates of O2 uptake and CO2 release rose. This was followed by a gradual decrease until stable levels of O2 uptake and CO2 release were achieved. Seeds kept for prolonged periods at 24°C, showed neither a change in germination capacity nor in rates of O2 uptake and CO2 release. Respiratory quotients were 0.55–0.7. The initial rise in O2 uptake correlated with the rate of water uptake and with breaking of primary dormancy. However, the subsequent decline in O2 uptake was not generally linked to induction of secondary dormancy. An increased O2 uptake was not required during breaking of secondary dormancy. It is concluded that changes in dormancy are not generally related to changes in respiratory activity. However, germination strongly depends on respiration. The increase in O2 uptake started well before radicle protrusion. A far red irradiation only reversed this increase when it was given before germination escaped from its red light antagonising action. The contribution of different respiratory pathways was followed during prolonged incubation at 24°C in darkness. KCN at 1.5 mM was needed to inhibit the cytochrome pathway (CP) and benzohydroxamic acid (BHAM) at 30 mM to inhibit the alternative pathway (AP). These concentrations did not exert any side effects. Electron flow was predominantly via the CP, maximally 10% was via the AP. Flow through the CP declined during the first 6 days and residual respiration remained constant. Therefore, the contribution of residual respiration became relatively more important with prolonged incubation. KCN at concentrations that almost completely inhibited flow through the CP, did not dramatically reduce germination. BHAM already inhibited germination at concentrations that do not inhibit oxygen uptake.  相似文献   

15.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   

16.
During temporary incubation at 25°C in buffered solutions (pH 4.0) of abscisic acid (ABA) seeds of lettuce ( Lactuca sativa L. cv. Olof) lost the red-light initiated ability to germinate in buffer. The development of secondary dormancy required an inhibitory ABA content in the seeds during a number of days. A temporary incubation in ABA during 24 h met these requirements only if the solution was about 100-fold more concentrated than during continuous incubation. Studies with 2-14C-ABA showed that the amount of ABA which had penetrated in 24 h was reduced by a factor 100 within 3 to 4 days during subsequent incubation in buffer. Both leaching and metabolic changes were involved in the reduction process. The nature of the metabolic products remained obscure. A shift to 2°C after incubation in ABA prevented the induction of secondary dormancy, but inhibited ABA metabolism. ABA did not interfere with the induction rate of secondary dormancy, and it was not required to maintain the state of dormancy. The sole function of ABA was the non-specific inhibition of germination, which indirectly facilitated the development of an ABA independent secondary dormancy. – The level of endogenous ABA was compared to the amount of ABA found in the embryo during and after incubation in ABA solutions marked with 2-14C-ABA. The level of endogenous ABA in air-dry seeds (0.11 ng/mg dry weight) corresponded to the minimal level at which penetrated ABA inhibited germination. This level had to be present at least during 4 to 5 days to inhibit the effect of red light. Since endogenous ABA was quickly reduced upon imbibition, a regulatory function of endogenous ABA in the inhibition of red light induced germination can be ruled out. A function in the temporary inhibition of dark germination and, consequently, in the development of secondary light irresponsiveness cannot be excluded, however.  相似文献   

17.
The genus Jeffersonia, which contains only two species, has a trans‐Atlantic disjunct distribution. The aims of this study were to determine the requirements for breaking dormancy and germination of J. dubia seeds and to compare its dormancy characteristics with those of the congener in eastern North America. Ripe seeds of J. dubia contain an underdeveloped embryo and were permeable to water. In nature, seeds were dispersed in May, while embryos began to grow in September, and were fully elongated by late November. Germination started in March of the next year, and seeds emerged as seedlings soon after germination. In laboratory experiments, incubation at high temperatures (25 °C, 25/15 °C) for at least 8 weeks was required to initiate embryo growth, while a transfer to moderate temperatures (20/10 °C, 15/6 °C) was needed for the completion of embryo growth. At least 8 weeks at 5 °C was effective in overcoming physiological dormancy and for germination in seeds after the embryos had fully elongated. Thus, both high and low temperatures were essential to break dormancy. Gibberellic acid (GA3) treatment could substitute for the high temperature requirement, but not for the low temperature requirement. Based on the dormancy‐breaking requirements, it is confirmed that the seeds have deep simple morphophysiological dormancy. This dormancy type is similar to that of seeds of the eastern North American species J. diphylla. Although seeds require 10–11 months from seed dispersal to germination in nature, under controlled conditions they required only 3 months after treatment with 1000 mg·l?1 GA3, followed by incubation at 15/6 °C. This represents practical knowledge for propagation of these plants from seed.  相似文献   

18.
Khan AA  Zeng GW 《Plant physiology》1985,77(4):817-823
`Grand Rapids' lettuce Lactuca sativa L. seeds germinate readily at 15°C but poorly at 25°C in darkness. When held in dark at 25°C for an extended period, the ungerminated seeds become dormant as shown by their inability to germinate or transfer to 15°C in darkness. Induction of dormancy at 25°C was prevented by exposure to CN, azide, salicylhydroxamic acid (SHAM), dinitrophenol, and pure N2 as determined by subsequent germination at 15°C on removal of inhibitors. The effectiveness of inhibitors to break dormancy declined as dormancy intensified. At relatively low levels, CN, SHAM, and azide promoted dark germination at 25°C while at high levels they were inhibitory. Uptake of O2 by seeds held at 25°C for 4 days in 1.0 millimolar KCN was inhibited by 67% but was promoted 61% when KCN was removed. Correspondingly greater inhibition (79%) and promotion (148%) occurred when 1.0 millimolar SHAM was added to KCN solution. When applied alone, SHAM had little effect on O2 uptake. These data indicate that Cyt pathway of respiration plays a dominant role in the control of both dormancy induction and germination of lettuce seeds, and `alternative pathway' is effectively engaged in presence of CN. The channeling of respiratory energy use for processes governing germination or dormancy is subject to control by physical and chemical factors.

A scheme is proposed that illustrates compensatory use of energy for processes controlling dormancy induction and germination. A block of germination, e.g. by low water potential polyethylene glycol solution or a supraoptimal temperature spares energy to be utilized for dormancy induction while a block of dormancy induction by low levels of CN (similar to GA and light effects) drives germination. Blocking both processes by inhibitors (e.g. CN, CN + SHAM) presumably leads to accumulation of `reducing power' with consequent improvement in O2 uptake and oxidation rates of processes controlling germination or dormancy induction upon removal of the inhibitors.

  相似文献   

19.
  • Hypoxic floodwaters can seriously damage seedlings. Seed dormancy could be an effective trait to avoid lethal underwater germination. This research aimed to discover novel adaptive dormancy responses to hypoxic floodwaters in seeds of Echinochloa crus‐galli, a noxious weed from rice fields and lowland croplands.
  • Echinochloa crus‐galli dormant seeds were subjected to a series of sequential treatments. Seeds were: (i) submerged under hypoxic floodwater (simulated with hypoxic flasks) at different temperatures for 15 or 30 days, and germination tested under drained conditions while exposing seeds to dormancy‐breaking signals (alternating temperatures, nitrate (KNO3), light); or (ii) exposed to dormancy‐breaking signals during hypoxic submergence, and germination monitored during incubation and after transfer to drained conditions.
  • Echinochloa crus‐galli seed primary dormancy was attenuated under hypoxic submergence but to a lesser extent than under drained conditions. Hypoxic floodwater did not reinforced dormancy but hindered secondary dormancy induction in warm temperatures. Seeds did not germinate under hypoxic submergence even when subjected to dormancy‐breaking signals; however, these signals broke dormancy in seeds submerged under normoxic water. Seeds submerged in hypoxic water could sense light through phytochrome signals and germinated when normoxic conditions were regained.
  • Hypoxic floodwaters interfere with E. crus‐galli seed seasonal dormancy changes. Dormancy‐breaking signals are overridden during hypoxic floods, drastically decreasing underwater germination. In addition, results indicate that a fraction of E. crus‐galli seeds perceive dormancy‐breaking signals under hypoxic water and germinate immediately after aerobic conditions are regained, a hazardous yet less competitive environment for establishment.
  相似文献   

20.

Background and Aims

Only very few studies have been carried out on seed dormancy/germination in the large monocot genus Narcissus. A primary aim of this study was to determine the kind of seed dormancy in Narcissus hispanicus and relate the dormancy breaking and germination requirements to the field situation.

Methods

Embryo growth, radicle emergence and shoot growth were studied by subjecting seeds with and without an emerged radicle to different periods of warm, cold or warm plus cold in natural temperatures outdoors and under controlled laboratory conditions.

Key Results

Mean embryo length in fresh seeds was approx. 1·31 mm, and embryos had to grow to 2·21 mm before radicle emergence. Embryos grew to full size and seeds germinated (radicles emerged) when they were warm stratified for 90 d and then incubated at cool temperatures for 30 d. However, the embryos grew only a little and no seeds germinated when they were incubated at 9/5, 10 or 15/4 °C for 30 d following a moist cold pre-treatment at 5, 9/5 or 10 °C. In the natural habitat of N. hispanicus, seeds are dispersed in late May, the embryo elongates in autumn and radicles emerge (seeds germinate) in early November; however, if the seeds are exposed to low temperatures before embryo growth is completed, they re-enter dormancy (secondary dormancy). The shoot does not emerge until March, after germinated seeds are cold stratified in winter.

Conclusion

Seeds of N. hispanicus have deep simple epicotyl morphophysiological dormancy (MPD), with the dormancy formula C1bB(root) – C3(epicotyl). This is the first study on seeds with simple MPD to show that embryos in advanced stages of growth can re-enter dormancy (secondary dormancy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号