首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six products were isolated by reverse phase HPLC from the reaction of thymidine with osmium tetroxide. Four of the products were identified as stereoisomers of 5,6-dihydro-5,6-dihydroxy-thymidine (TG). The absolute configurations of these four compounds (from the shortest to the longest HPLC retention times) were determined by two-dimensional nuclear magnetic resonance spectroscopy to be (-)-trans-5S,6S-, (+)-trans-5R,6R-, (-)-cis-5R,6S-, and (+)-cis-5S,6R-5,6-dihydro-5,6-dihydroxy-thymidine. The other two products were dimers with unknown linking sites. Parameters of the mass and nuclear magnetic resonance spectra are reported and discussed.  相似文献   

2.
3.
Novel boron compounds, a series of 4-hydroxy-5,6-dihydroborauracil and 4-hydroxy-5,6-dihydroborathymine derivatives containing various substituents at 3-, 5- and 6-positions, is presented. The spectroscopic properties, along with analyses of NMR-controlled boron compound–alcohol and boron compound–amine interactions, proves the existence of sp3-hybridized, stable B,B-bis-methoxy-5,6-dihydroborauracils and pyridine-/n-butylamine-5,6-dihydroborauracils ate-complexes in solution.  相似文献   

4.
5.
Haemoglobin-catalysed retinoic acid 5,6-epoxidation.   总被引:3,自引:2,他引:1       下载免费PDF全文
Examination of the subcellular distribution of retinoic acid 5,6-epoxidase activity in rat liver and human liver homogenates showed that there is a prominent peak of activity in a high-density fraction. A corresponding peak was also detected in rat blood and human blood. Retinoic acid 5,6-epoxidation was catalysed by human blood cells but not by human plasma, and purified human haemoglobin also catalysed the epoxidation of retinoic acid to 5,6-epoxyretinoic acid. These results suggest that retinoic acid 5,6-epoxidase activity in human liver and rat liver homogenates is partially due to the presence of residual blood cells, and particularly haemoglobin, in the homogenates. In the retinoic acid 5,6-epoxidation catalysed by human haemoglobin, molecular O2 was required and its reaction was stimulated by Triton X-100. Boiling of haemoglobin solution resulted in an 94% decrease in the activity. NADPH (1 mM) and NADH (1 mM) completely [2-mercaptoethanol (5 mM) almost completely] inhibited the 5,6-epoxidation catalysed by haemoglobin, but catalase, superoxide dismutase and mannitol showed no inhibitory effect. CN- ion (100 mM) inhibited the reaction, but N3- ion (100 mM) did not.  相似文献   

6.
Retinoic acid 5,6-epoxidation by hemoproteins   总被引:2,自引:0,他引:2  
Retinoic acid 5,6-epoxidase activity was found in several hemoproteins such as human oxy- and methemoglobin (HbO2 and MetHb), equine skeletal muscle oxy- and metmyoglobin (MbO2 and MetMb), bovine liver catalase, and horseradish peroxidase. Hematin also catalyzed retinoic acid 5,6-epoxidation. The results suggest that the heme moiety participates in the epoxidation. However, neither horse heart cytochrome c, nor free ferrous ion nor free ferric ion exhibited the epoxidase activity. Some hemoproteins (HbO2, MetHb, MbO2, MetMb, catalase, peroxidase, and hematin) exhibited characteristic individual pH dependences of the activity, suggesting that the epoxidase activities of the hemoproteins are influenced by the apoenzymes to some degree. This view is also supported by the finding that preincubation of an HbO2 preparation at various temperatures (37-70 degrees C) reduced its epoxidase activity with increasing temperature, whereas the activity of hematin was unaffected. Active oxygen scavengers such as mannitol, catalase, and superoxide dismutase exhibited no effect on the epoxidase activities of HbO2, MetHb, MbO2, and MetMb. A ligand of heme, CN- (100 mM), inhibited the epoxidase activities but N3- (100 mM) did not. The epoxidase activities were completely inhibited by NADPH, NADH, and/or 2-mercaptoethanol but not by NADP+ and/or NAD+. An intermediate in the epoxidation may be reduced by NADPH, NADH and/or 2-mercaptoethanol. Radical species can be considered as plausible candidates for the intermediate.  相似文献   

7.
8.
9.
1. A method is described for the preparation and purification of the RNA from the RNA coliphage ZIK/1. 2. Some of the physical characteristics and infective properties of coliphage-ZIK/1 RNA were examined. 3. A method is also described for examining the type and quantity of RNA synthesized after bacteriophage infection. 4. Ribosome synthesis was decreased 15min. after bacteriophage adsorption, bacteriophage RNA was synthesized from 15min. to 120min. after adsorption and intracellular bacteriophages appeared 40min. after adsorption. Cell lysis commenced 60min. after adsorption, and was half complete 20min. later and 90-95% complete 120min. after adsorption. 5. Cell division continued until 40min. after bacteriophage adsorption. 6. Bacterial ribosomes were conserved during the infective process. 7. Intracellular bacteriophage RNA has sedimentation coefficient 28s but after cell lysis it has sedimentation coefficient 10-5s.  相似文献   

10.
5,6-Dihydroxyindole (5,6DHI) and 5,6-dihydroxyindole-2-carboxylic acid (5,6DHI2C) are ultimate precursors of the black melanin, eumelanin. These indolic metabolites and their O-methyl derivatives are excreted in urine of melanoma patients at high levels and of healthy persons at low levels. We describe here a simplified procedure for preparing milligram to subgram quantities of 5,6DHI and 5,6DHI2C and their O-methyl derivatives. Dopachrome generated in situ by ferricyanide oxidation of dopa at pH 6.5 underwent spontaneous decarboxylation to give 5,6DHI in 40% isolation yield, while treatment of dopachrome with alkali at pH 13 afforded 5,6DHI2C in 38% isolation yield. Two isomeric O-methyl derivatives of 5,6DHI were prepared by treatment with diazomethane, while those of 5,6DHI2C were prepared by treatment with diazomethane followed by alkaline hydrolysis of the methyl esters. 5,6DHI and 6-hydroxy-5-methoxyindole were also obtained by heating the corresponding carboxylic acids in decalin. 5-Hydroxy-6-methoxyindole and 6-hydroxy-5-methoxyindole-2-carboxylic acid could also be prepared by debenzylation of the commercially available O-benzyl derivatives.  相似文献   

11.
cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid was recently found to be metabolized by ram seminal vesicles to 5-hydroxyprostaglandin I 1 alpha and 5-hydroxyprostaglandin I 1 beta, 5(6)epoxyprostaglandin E1 and 5,6-dihydroxyprostaglandin E1. The epoxide can be hydrolyzed by epoxide hydrolases to 5,6-dihydroxy-8,11,14-eicosatrienoic acid. The latter was incubated with microsomes of ram seminal vesicles for 2 min at 37 degrees C and the polar metabolites were purified by reversed phase HPLC and analyzed by capillary column gas chromatography-mass spectrometry. The major metabolite was identified as 5,6-dihydroxyprostaglandin F 1 alpha. In the presence of glutathione (1 mM), 5,6-dihydroxyprostaglandin E1 was also formed. The 3H-labelled vicinal diol and the 3H-labelled epoxide were metabolized to polar products to a similar extent, but the formation of prostaglandin E compounds in the presence of glutathione was lower from the diol than from the epoxide or from arachidonic acid. The likely prostaglandin endoperoxide intermediates in the metabolism of the diol (5,6-dihydroxyprostaglandin G1 and 5,6-dihydroxyprostaglandin H1) thus appear to be less prone to be isomerized to prostaglandin E compounds than prostaglandins G2 and H2 and their 5(6)epoxy counterparts. 5(6)Epoxyprostaglandin E1 and 5,6-dihydroxyprostaglandin E1 can be chemically transformed into 5,6-dihydroxyprostaglandin B1. The latter can be analyzed by HPLC or by mass fragmentography, and a simple chemical synthesis of 5,6-dihydroxyprostaglandin B1 from prostaglandin E2 is described.  相似文献   

12.
Determination of 5,6-dihydrouridine in ribonucleic acid   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
Oligonucleotides that contain a single modified pyrimidine, i.e., thymine glycol (Tg), 5,6-dihydrothymine (DHT), and 5-hydroxycytosine (5-OHC) were synthesized in order to investigate the substrate specificity and the excision mechanism of two Escherichia coli repair enzymes: endonuclease III and formamidopyrimidine DNA glycosylase (Fpg). Three techniques of analysis were employed. A gas chromatography-mass spectrometry (GC-MS) assay with HPLC prepurification was used to quantify the release of the modified bases, while polyacrylamide gel electrophoresis and matrix-assisted laser-desorption ionization-mass spectrometry (MALDI-MS) provided insights into the mechanism of oligonucleotide cleavage. Values of Vm/Km constants lead to the conclusion that the substrates are processed by endonuclease III with the following preference: Tg > 5-OHC > DHT. This confirms that Tg is an excellent substrate for endonuclease III. Fpg-mediated cleavage of the 5-OHC-containing oligonucleotide is processed at the same rate than endonuclease III. Furthermore, Fpg was found to have a little but relevant activity on DHT-containing oligonucleotide, thus broadening the substrate specificity of this enzyme to a new modified pyrimidine. While 5-OHC-containing oligonucleotides are cleaved by the two enzymes, no or a small amount of the modified base was found to be released, as determined by GC-MS. From these data it may be suggested that 5-OHC could be modified during its enzymatic excision. Finally, MALDI-MS analyses shed new light on the mechanism of action of endonuclease III: the molecular masses of the repaired fragments of 5-OHC- and DHT-containing oligonucleotides showed that endonuclease III cleaves the DNA backbone mainly through a hydrolytic process and that no beta-elimination product was detected.  相似文献   

15.
A series of carotenoids with a 5,6-dihydro-5,6-dihydroxy-beta-end group, named ipomoeaxanthins A (1), B (2), C1 (3) and C2 (4) were isolated from the flesh of yellow sweet potato "Benimasari", Ipomoea batatas Lam. Their structures were determined to be (5R,6S,3'R)-5,6-dihydro-beta,beta-carotene-5,6,3'-triol (1), (5R,6S,5'R,6'S)-5,6,5',6'-tetrahydro-beta,beta-carotene-5,6,5'6'-tetrol (2), (5R,6S,5'R,8'R)-5',8'-epoxy-5,6,5',8'-tetrahydro-beta,beta-carotene-5,6-diol (3), and (5R,6S,5'R,8'S)-5',8'-epoxy-5,6,5',8'-tetrahydro-beta,beta-carotene-5,6-diol (4) by UV-Vis, NMR, MS and CD data.  相似文献   

16.
The elimination of halide ion from either 5-bromo- or 5-iodo-5,6-dihydrouracil to yield uracil is a slow reaction which, in the case of 5-iodo-5,6-dihydrouracil, is 400 times slower than the enzymatic release of 125I? from 5-[125I]iodouracil. The elimination of HBr from 5-bromo-5,6-dihydrouracil is subject to general base catalysis by tris(hydroxymethyl)aminomethane (k2Tris base = 11 × 10?4M?1 min?1, 37°C, ionic strength 1.0 M). At pH values near and above physiological, both the bromo- and iododihydropyrimidines are subject to hydrolysis of the dihydropyrimidine ring, a reaction which parallels halide elimination to yield uracil. The resulting 2-halo-3-ureidopropionate then cyclizes via intramolecular attack of the ureido oxygen atom to yield halide ion and 2-amino-2-oxazoline-5-carboxylic acid as final products. In dilute hydroxide ion, the kinetics of 5-bromo-5,6-dihydrouracil hydrolysis (25°C, ionic strength 1.0 M) show a change in rate-determining step as a function of increasing hydroxide ion concentration, a result which, as in the case of 5,6-dihydrouracil, can be explained in terms of the formation of a tetrahedral addition intermediate. The data are discussed relative to enzymatically catalyzed halopyrimidine dehalogenation.  相似文献   

17.
Previous data (1) have shown that L-DOPA increases the duration of the clonic phase of post-decapitation convulsions (PDC) in mice. It was suggested that this effect is produced by depleting 5-hydroxytryptamine (5-HT) in the inhibitory bulbospinal pathways and thus enhancing reflex activity in the spinal cord. If this were true then L-DOPA administration should not influence clonic PDC in animals whose 5-HT pathways were destroyed. We therefore tested the effects of L-DOPA on mice 3 weeks after pretreatment with the 5-HT neurotoxin, 5,6-dihydroxytryptamine (5, 6-DHT) (50 μg/kg, intracerebroventricularly). All mice were given the peripheral decarboxylase inhibitor, Ro 4-4602. 5,6-DHT halved the brain 5-HT levels and significantly increased the duration of clonic PDC. The administration of L-DOPA (320 mg/kg i.p.) to 5,6 DHT treated mice did not produce any further significant increases in duration. The administration of 5-hydroxytryptophan (5-HTP) (100 mg/kg, i.v.) to 5,6-DHT treated mice, however, increased 5-HT to above control levels and reduced convulsions to control levels. Administration of both 5-HTP and L-DOPA to 5,6-DHT treated mice resulted in 5-HT levels and convulsion times which were also not significantly different from the controls. These data give additional indication that intact 5-HT nerve terminals are necessary for L-DOPA to prolong the duration of clonic PDC.  相似文献   

18.
19.
Cholestane 3 beta,5 alpha, 6 beta-triol has been identified as the exclusive product formed on hydration of cholesterol 5,6 alpha- and 5,6 beta-oxide catalyzed by cholesterol oxide hydrolase in liver microsomes obtained from five mammalian species. Highest activities were present in microsomes from rats and humans. Both acid- and base-catalyzed hydrolysis of the two epoxides also produce this product, presumably due to preference for pseudo-axial opening of the oxirane ring to form product with a trans-AB ring junction. Although the beta-oxide is more reactive than the alpha-oxide upon acid-catalyzed hydration, the alpha-oxide is a 4.5-fold better substrate than the beta-oxide as indicated by values of Vmax/Km. The kinetic parameters Vmax and Km for the reaction catalyzed by rat liver microsomes are 1.68 +/- 0.15 X 10(-7) M min-1 and 10.6 +/- 1.5 microM for the alpha-oxide and 1.32 +/- 0.11 X 10(-7) M min-1 and 37.2 +/- 5.5 microM for the beta-oxide at 0.35 mg protein/ml, pH 7.4, 6.35% (v/v) CH3CN, and 37 degrees C. Several imino compounds are competitive inhibitors for the enzyme from rat liver. The most effective of these is 5,6 alpha-iminocholestanol (Ki = 0.085 microM) which was known to be a good inhibitor from previous studies. Inhibition by aziridines is consistent with the participation of acid catalysis in the mechanism of action of the enzyme. Cholesterol oxide hydrolase is a distinct enzyme from oxidosqualene cyclase as well as microsomal epoxide hydrolase (EC 3.3.2.3) and the recently reported mouse hepatic microsomal epoxide hydrolase that catalyzes the hydration of trans-stilbene oxide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号