首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism for the generation of the Ca2+/calmodulin (CaM)-independent activity of calmodulin-dependent protein kinase II (CaM-kinase II) by autophosphorylation was studied by characterizing the autothiophosphorylated enzyme, which is resistant to hydrolysis. When CaM-kinase II was incubated with adenosine 5'-O-(thiotriphosphate) at 5 degrees C, the incorporation of thiophosphate into the enzyme occurred rapidly, reaching a maximum level within a few minutes, in parallel with increase in Ca2+/CaM-independent activity. The maximum level was 1 mol of thiophosphate per mol of subunit of the enzyme, and the thiophosphorylation occurred exclusively at Thr286 in the alpha subunit and Thr287 in the other subunits of the enzyme. These results, taken together, indicate that the autothiophosphorylation of Thr286/Thr287 of each subunit is involved in the generation of the Ca2+/CaM-independent activity. The activity of the autothiophosphorylated enzyme, when assayed in the presence of Ca2+/CaM, showed the same kinetic properties as did the Ca2+/CaM-dependent activity of the original non-phosphorylated enzyme, but when assayed in the absence of Ca2+/CaM, it showed the same Vmax as the Ca2+/CaM-dependent activity but higher Km values for protein substrates. Thus, the phosphorylation of Thr286/Thr287 of the subunit of the enzyme by autophosphorylation appears to not only enhance the affinity of its substrate-binding site for the protein substrate, although it is lower than that of the enzyme activated by the binding of CaM, but also convert the active site to the fully active state.  相似文献   

2.
3.
Molecular diversity of ion channel structure and function underlies variability in electrical signaling in nerve, muscle, and non-excitable cells. Protein phosphorylation and alternative splicing of pre-mRNA are two important mechanisms to generate structural and functional diversity of ion channels. However, systematic mass spectrometric analyses of in vivo phosphorylation and splice variants of ion channels in native tissues are largely lacking. Mammalian large-conductance calcium-activated potassium (BK(Ca)) channels are tetramers of alpha subunits (BKalpha) either alone or together with beta subunits, exhibit exceptionally large single channel conductance, and are dually activated by membrane depolarization and intracellular Ca(2+). The cytoplasmic C terminus of BKalpha is subjected to extensive pre-mRNA splicing and, as predicted by several algorithms, offers numerous phospho-acceptor amino acids. Here we use nanoflow liquid chromatography tandem mass spectrometry on BK(Ca) channels affinity-purified from rat brain to analyze in vivo BKalpha phosphorylation and splicing. We found 7 splice variations and identified as many as 30 Ser/Thr in vivo phosphorylation sites; most of which were not predicted by commonly used algorithms. Of the identified phosphosites 23 are located in the C terminus, four were found on splice insertions. Electrophysiological analyses of phospho- and dephosphomimetic mutants transiently expressed in HEK-293 cells suggest that phosphorylation of BKalpha differentially modulates the voltage- and Ca(2+)-dependence of channel activation. These results demonstrate that the pore-forming subunit of BK(Ca) channels is extensively phosphorylated in the mammalian brain providing a molecular basis for the regulation of firing pattern and excitability through dynamic modification of BKalpha structure and function.  相似文献   

4.
Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) autophosphorylated under limiting conditions (7 microM [gamma-32P]ATP, 500 microM magnesium acetate, 4 degrees C) was analyzed by CNBr cleavage and peptide mapping to determine the site of autophosphorylation that brings about transition of the kinase to the Ca2+-independent form. Reverse phase high performance liquid chromatography (HPLC) (C3) revealed one major CN-Br 32P-peptide (CB1) that eluted at about 6% propanol. This peptide contained [32P]threonine, but almost no [32P]serine, and migrated as a single band (Mr = 3000-3500) in polyacrylamide gels run in the presence of urea and sodium dodecyl sulfate. The properties of CB1 were compared to the properties of a 26-residue synthetic peptide containing the CaM-binding and inhibitory domains as well as a consensus phosphorylation sequence (-Arg-Gln-Glu-Thr-) of rat brain CaM-kinase II (residues 282-307 and 283-308 of the alpha and beta subunits, respectively). CB1 and the synthetic peptide comigrated in urea/sodium dodecyl sulfate gels, co-eluted from reverse phase HPLC (C3 and C18) and from Sephadex G-50, and exhibited Ca2+-dependent calmodulin-binding properties. When the two peptides were subjected to automated Edman sequence analysis, both exhibited a burst of 32P release at cycle 5, which is consistent with the expected amino-terminal sequence of the two peptides, i.e. His-Arg-Gln-Glu-Thr(PO4)-. These findings indicate that autophosphorylation of Thr286 (alpha subunit) and Thr287 (beta subunit) is responsible for transition of CaM-kinase II to the Ca2+-independent form.  相似文献   

5.
6.
Ca2+ channel beta subunits regulate trafficking and gating (opening and closing) of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, they are thought to be modular structures composed of five domains (A-E) that are related to the large family of membrane associated guanylate-kinase (MAGUK) proteins. The crystal structures of the beta subunit core, B-D, domains have recently been reported; however, very little is known about the structures of the A and E domains. The N-terminal A domain is a hypervariable region that differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4). Furthermore, this domain undergoes alternative splicing to create multiple N-terminal structures within a given gene class that have distinct effects on gating. We have solved the solution structure of the A domain of the human beta4a subunit, a splice variant that we have shown previously to have alpha1 subunit subtype-specific effects on Ca2+ channel trafficking and gating.  相似文献   

7.
Z Hillel  C W Wu 《Biochemistry》1977,16(15):3334-3342
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme.  相似文献   

8.
J W Schmidt  W A Catterall 《Cell》1986,46(3):437-444
The sodium channel from rat brain is a complex of alpha (260 kd), beta 1 (36 kd), and beta 2 (33 kd) subunits. The alpha and beta 2 subunits are linked by disulfide bonds. The earliest biosynthetic precursor of the alpha subunit is a 203 kd core polypeptide with sufficient high-mannose carbohydrate chains to increase its apparent size to 224 kd. It is processed to 224 kd and 249 kd precursor forms containing complex carbohydrate chains before it achieves the mature size of 260 kd. Most newly synthesized alpha subunits are not disulfide-linked to beta 2 subunits, but remain as a metabolically stable pool of intracellular subunits. alpha subunits disulfide-linked to beta 2 are found preferentially at the cell surface. A possible role for this intracellular pool as a rate-limiting step in the regulation of the cell surface density and localization of sodium channels in developing neurons is proposed.  相似文献   

9.
Phosphorylase kinase, a regulatory enzyme of glycogenolysis in skeletal muscle, is a hexadecameric oligomer consisting of four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha, beta, and delta, the last being endogenous calmodulin). The enzyme is activated by a variety of effectors acting through its regulatory subunits. To probe the quaternary structure of nonactivated and activated forms of the kinase, we used the heterobifunctional, photoreactive cross-linker N-5-azido-2-nitrobenzoyloxysuccinimide. Mono-derivatization of the holoenzyme with the succinimidyl group, followed by photoactivation of the covalently attached azido group, resulted in intramolecular cross-linking to form two distinct heterodimers: a major (alphagamma) and a minor (betadelta) conjugate. Formation of both conjugates was significantly altered in activated conformations of the enzyme induced by phosphorylation, alkaline pH, and several allosteric activators (ADP, exogenous calmodulin/Ca2+, and Ca2+ alone). Of these activating mechanisms, all increased formation of alphagamma, except Ca2+ alone, which inhibited its formation. When cross-linking was carried out at alkaline pH or in the presence of ADP or exogenous calmodulin/Ca2+, the cross-linked enzyme remained activated following removal of the activators; however, cross-linking in the presence of Ca2+ resulted in sustained inhibition. The results indicate that perturbations in the subunit cross-linking forming the alphagamma dimer reflect the subsequent extent of sustained activation of the holoenzyme that is measured. The region cross-linked to the catalytic gamma subunit was confined to the C-terminal 1/6th of the alpha subunit, which contains known regulatory regions. These results suggest that activators of the phosphorylase kinase holoenzyme perturb interactions between the C-terminal region of the inhibitory alpha subunit and the catalytic gamma subunit, ultimately leading to activation of the latter.  相似文献   

10.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

11.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been suggested to participate in various cellular phenomena triggered by Ca2+ signalling. In the present study, we addressed the functional role of CaMKII in molecular-signal transduction in cells by mathematical modelling of putative biochemical-reaction networks thought to represent an essential part of molecular events responsible for CaMKII-related cellular phenomena. These networks include Ca2+/calmodulin-dependent threonine-286/287 (Thr286/287) autophosphorylation of CaMKII versus dephosphorylation of the enzyme. Computer simulation of the model was performed to examine the relation between the Ca2+-signalling pattern as an input and the resulting degree of Thr286/287 autophosphorylation (m) as an output. Under the simplified condition that the Ca2+ concentration during Ca2+ signalling was set to remain constant with time, the biochemical-reaction networks were shown to function as a switch. There is a threshold for gamma, a parameter representing the probability that the Thr286/287-dephosphorylated CaMKII subunit binds with the Ca2+/calmodulin complex; if gamma is above this threshold, m increases with time to a large degree (switch-on); otherwise, it remains near zero (switch-off). Mathematically, this sharp onset of m at the threshold can be accounted for by a change in the structure of the dynamic system describing the model, from bistability to monostability; this is analogous to the first-order phase transition in statistical physics. For the oscillatory time course of [Ca2+], switching characteristics were also shown with respect to the frequency and the maximum amplitude of the oscillation. These results suggest that graded information mediated by Ca2+ signalling is digitized into all-or-non information mediated by Thr286/287 autophosphorylation of CaMKII.  相似文献   

12.
Azospirillum brasilense glutamate synthase (GltS) is the prototype of bacterial NADPH-dependent enzymes, a class of complex iron-sulfur flavoproteins essential in ammonia assimilation processes. The catalytically active GltS alpha beta holoenzyme and its isolated alpha and beta subunits (162 and 52 kDa, respectively) were analyzed using synchrotron radiation x-ray solution scattering. The GltS alpha subunit and alpha beta holoenzyme were found to be tetrameric in solution, whereas the beta subunit was a mixture of monomers and dimers. Ab initio low resolution shapes restored from the scattering data suggested that the arrangement of alpha subunits in the (alpha beta)4 holoenzyme is similar to that in the tetrameric alpha 4 complex and that beta subunits occupy the periphery of the holoenzyme. The structure of alpha 4 was further modeled using the available crystallographic coordinates of the monomeric alpha subunit assuming P222 symmetry. To model the entire alpha beta holoenzyme, a putative alpha beta protomer was constructed from the coordinates of the alpha subunit and those of the N-terminal region of porcine dihydropyrimidine dehydrogenase, which is similar to the beta subunit. Rigid body refinement yielded a model of GltS with an arrangement of alpha subunits similar to that in alpha 4, but displaying contacts also between beta subunits belonging to adjacent protomers. The holoenzyme model allows for independent catalytic activity of the alpha beta protomers, which is consistent with the available biochemical evidence.  相似文献   

13.
The subunits of phosphorylase kinase are separated and isolated in high yield by gel filtration chromatography in pH 3.3 phosphate buffer containing 8 M urea. Three protein peaks are obtained: the alpha and beta subunits coelute in the first, whereas the gamma and delta subunits are separate peaks. Upon dilution of the denaturant, catalytic activity reappears, associated only with the gamma subunit. As has been previously observed (Kee, S.M., and Graves, D.J. (1986) J. Biol. Chem. 261, 4732-4737), addition of calmodulin dramatically stimulates the reactivation of gamma. Inclusion of increasing amounts of the alpha/beta subunit mixture in the renaturation progressively decreases the activity of the renatured gamma or gamma-calmodulin. This inhibition by alpha/beta is likely due to specific interactions with the gamma subunit because the inhibition is less at pH 8.2 than at pH 6.8 and less when equivalent amounts of phosphorylated alpha/beta subunits are used (both alkaline pH and phosphorylation are known to stimulate the activity of the holoenzyme). These results suggest that the role of either the alpha or beta subunits, or perhaps both, in the nonactivated (alpha 2 beta 2 gamma 2 delta 2)2 complex of phosphorylase kinase is to suppress the activity of the gamma subunit and that activation of the enzyme, by phosphorylation for instance, is due to deinhibition caused by release of this quaternary constraint by alpha and/or beta upon gamma.  相似文献   

14.
The AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase important for the responses to metabolic stress. It consists of a catalytic alpha subunit and two non-catalytic subunits, beta and gamma, and is regulated both by the allosteric action of AMP and by phosphorylation of the alpha and beta subunits catalyzed by AMPKK(s) and autophosphorylation. The Thr172 site on the alpha subunit has been previously characterized as an activating phosphorylation site. Using bacterially expressed AMPK alpha1 subunit proteins, we have explored the role of Thr172-directed AMPKKs in alpha subunit regulation. Recombinant alpha1 subunit proteins, representing the N-terminus, have been expressed as maltose binding protein (MBP) 6x His fusion proteins and purified to homogeneity by Ni(2+) chromatography. Both wild-type alpha1(1-312) and alpha1(1-312)T172D are inactive when expressed in bacteria, but the former can be fully phosphorylated (1 mol/mol) on Thr172 and activated by a surrogate AMPKK, CaMKKbeta. The corresponding AMPKalpha1(1-392), an alpha construct containing its autoinhibitory sequence, can be similarly phosphorylated, but it remains inactive. In an insulinoma cell line, either low glucose or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) treatment leads to activation and T172 phosphorylation of endogenous AMPK. Under the same conditions of cell incubation, we have identified an AMPKK activity that both phosphorylates and activates the recombinant alpha1(1-312), but this Thr172-directed AMPKK activity is unaltered by low glucose or AICAR, indicating that it is constitutively active.  相似文献   

15.
16.
Kumar P  Brushia RJ  Hoye E  Walsh DA 《Biochemistry》2004,43(31):10247-10254
Recombinant baculoviruses were created and used to coexpress rat phosphorylase kinase (Phk) alpha, gamma, and delta subunits and rabbit beta subunit in insect cells. Coexpression allowed creation of the (alphabetagammadelta)4 hexadecamer, the alphagammadelta heterotrimer, and the gammadelta heterodimeric subcomplexes. Neither the individual alpha, beta, or gamma subunit nor any complex containing the beta subunit other than the hexadecameric holoenzyme was obtained in soluble form. The expressed complexes exhibited pH- and [Ca2+]-dependent specific activities that were similar to those of the Phk holoenzyme purified from rabbit skeletal muscle (SkM Phk). SkM Phk, expressed Phk, and the alphagammadelta subcomplex were activated by exogenous calmodulin and underwent Ca(2+)-dependent autophosphorylation. In some of these features there were subtle differences that could likely be attributed to differences in the covalent modification state of the baculovirus-driven expressed protein. Our results provide an important avenue to probe the detailed characterization of the structure of Phk and the function of the individual domains of the subunits using baculovirus-mediated expression of Phk and Phk subcomplexes.  相似文献   

17.
Calcium/calmodulin (CaM)-dependent protein kinase II (CaM-kinase II) contained within the postsynaptic density (PSD) was shown to become partially Ca2+-independent following initial activation by Ca2+/CaM. Generation of this Ca2+-independent species was dependent upon autophosphorylation of both subunits of the enzyme in the presence of Mg2+/ATP/Ca2+/CaM and attained a maximal value of 74 +/- 5% of the total activity within 1-2 min. Subsequent to the generation of this partially Ca2+-independent form of PSD CaM-kinase II, addition of EGTA to the autophosphorylation reaction resulted in further stimulation of 32PO4 incorporation into both kinase subunits and a loss of stimulation of the kinase by Ca2+/CaM. Examination of the sites of Ca2+-dependent autophosphorylation by phosphoamino acid analysis and peptide mapping of both kinase subunits suggested that phosphorylation of Thr286/287 of the alpha- and beta-subunits, respectively, may be responsible for the transition of PSD CaM-kinase II to the Ca2+-independent species. A synthetic peptide 281-309 corresponding to a portion of the regulatory domain (residues 281-314) of the soluble kinase inhibited syntide-2 phosphorylation by the Ca2+-independent form of PSD CaM-kinase II (IC50 = 3.6 +/- 0.8 microM). Binding of Ca2+/CaM to peptide 281-309 abolished its inhibitory property. Phosphorylation of Thr286 in peptide 281-309 also decreased its inhibitory potency. These data suggest that CaM-kinase II in the PSD possesses regulatory properties and mechanisms of activation similar to the cytosolic form of CaM-kinase II.  相似文献   

18.
Okamoto H  Ichikawa K 《Bio Systems》2000,55(1-3):65-71
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) undergoes Ca(2+)/calmodulin-dependent autophosphorylation of threonine-286/287 (Thr(286/287)). Extremely high concentration of CaMKII in the postsynaptic spine indicates that increase in the Ca(2+) concentration in the spine induced by synaptic activation results in Thr(286/287) autophosphorylation of this enzyme. It has recently been shown that the K(d) value of CaMKII for Ca(2+)/calmodulin (Ca(2+)/CaM) drastically decreases after Thr(286/287) autophosphorylation. Therefore, Ca(2+)/CaM associated with CaMKII becomes tightly bound to this kinase after Thr(286/287) autophosphorylation. This has been called 'Ca(2+)/CaM trapping'. We discussed the functional significance of Ca(2+)/CaM trapping in the neuronal system by a mathematical-modelling approach. We considered neighbouring synapses formed on the same dendrite and different increase in the Ca(2+) concentration in each spine. CaMKII undergoing Thr(286/287) autophosphorylation in each spine is eager to recruit nearby calmodulin in the dendrite for Ca(2+)/CaM trapping. Since the amount of calmodulin is limited, recruiting calmodulin to each spine causes competition among synapses for this finite resource. The results of our computer simulation show that this competition leads to 'winner-take-all': almost all calmodulin is taken by a few synapses to which relatively large increases in the Ca(2+) concentration are assigned. These results suggest a novel form of synaptic encoding of information.  相似文献   

19.
Recombinant murine BID protein was used as an in vitro substrate for the CK2 holoenzyme and the catalytic CK2alpha subunit. The results obtained show that BID can only serve as a substrate for the catalytic CK2alpha subunit. Phosphorylation of BID using the CK2 holoenzyme was only possible in the presence of polylysine, supporting the notion that BID behaves similarly to calmodulin. Co-immunoprecipitation of BID and CK2 subunits revealed that BID is preferentially associated with the CK2alpha subunit. Enzyme kinetic analyses yielded a Km value for BID that is a level of magnitude lower than that measured for casein and the synthetic peptide, suggesting more specific and tight binding of BID to CK2alpha. In contrast are the Vmax values observed, with a significantly higher phosphorylation rate measured for casein and the synthetic peptide than for BID. When BID was phosphorylated by polylysine-stimulated CK2 holoenzyme prior to caspase-8 cleavage, the formation of tC-BID was reduced in comparison to treatment with caspase-8 in the absence of protein kinase. Mass spectrometric analysis of BID phosphorylated by CK2alpha before and after cleavage with caspase-8 showed phosphorylation of residues Thr58 and Ser76.  相似文献   

20.
In the crystal structure of the mitochondrial F(1)-ATPase, the beta-Thr(163) residue was identified as a ligand to Mg(2+) and the beta-Glu(188) as directly involved in catalysis. We replaced the equivalent beta-Thr(159) of the chromatophore F(0)F(1) ATP synthase of Rhodospirillum rubrum with Ser, Ala, or Val and the Glu(184) with Gln or Lys. The mutant beta subunits were isolated and tested for their capacity to assemble into a beta-less chromatophore F(0)F(1) and restore its lost activities. All of them were found to bind into the beta-less enzyme with the same efficiency as the wild type beta subunit, but only the beta-Thr(159) --> Ser mutant restored the activity of the assembled enzyme. These results indicate that both Thr(159) and Glu(184) are not required for assembly and that Glu(184) is indeed essential for all the membrane-bound chromatophore F(0)F(1) activities. A detailed comparison between the wild type and the beta-Thr(159) --> Ser mutant revealed a rather surprising difference. Although this mutant restored the wild type levels and all specific properties of this F(0)F(1) proton-coupled ATP synthesis as well as Mg- and Mn-dependent ATP hydrolysis, it did not restore at all the proton-decoupled CaATPase activity. This clear difference between the ligands for Mg(2+) and Mn(2+), where threonine can be replaced by serine, and Ca(2+), where only threonine is active, suggests that the beta-subunit catalytic site has different conformational states when occupied by Ca(2+) as compared with Mg(2+). These different states might result in different interactions between the beta and gamma subunits, which are involved in linking F(1) catalysis with F(0) proton-translocation and can thus explain the complete absence of Ca-dependent proton-coupled F(0)F(1) catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号