首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》1987,891(1):49-55
Herbicides that bind specifically to Photosystem II greatly increased ammonia liberation by a heterotrophic cyanobacterium incubated with methionine sulfoximine anaerobically in light. Comparison of cells incubated under argon and nitrogen indicated that about one-half of the liberated ammonia came from endogenous sources, as well as from dinitrogen fixation. Chromatography of cell extracts revealed a light-induced, general breakdown of cellular proteins in the presence of methionine sulfoximide. Cultures grown on ammonia, and hence free of heterocysts and nitrogenase, liberated ammonia in the dark in nitrogen-free media with methionine sulfoximine and this liberation was inhibited separately by herbicides or light. A combination of light and herbicide, however, also enhanced ammonia liberation by these cells. Herbicidal Photosystem II inhibitors strongly inhibited light-induced assimilation of the ammonia analog, [14C]methylamine, by cyanobacteria. These results implicate Photosystem II directly in the ammonia metabolism of this cyanobacterium and suggest that herbicide-binding protein(s) of this system may regulate nitrogen assimilation coordinately with electron transport.  相似文献   

2.
The levels of form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) from Rhodobacter sphaeroides were found to depend on the concentration of ammonia supplied to photolithoautotrophically grown cultures. Under conditions in which the cells rapidly depleted the available ammonia, the level of in situ RubisCO activity decreased to less than 5% maximum activity; even at its maximum level under these conditions, the RubisCO activity was only 5% of the activity obtained from cultures supplied with saturating levels of ammonia. When cells were incubated with somewhat higher but not saturating amounts of ammonia, in situ RubisCO activity decreased immediately after the cells depleted the cultures of ammonia. The decrease in activity was not due to any detectable degradation of RubisCO protein, indicative of some mechanism to regulate the activity of the enzyme in response to the intracellular levels of assimilated ammonia. Furthermore, under conditions optimum for RubisCO inactivation, in situ RubisCO activity in permeabilized whole cells greatly exceeded the levels of enzymatic activity determined in vitro in cell extracts. Blockage of ammonia assimilation by inhibition of glutamine synthetase with methionine sulfoximine prevented the recovery of form I RubisCO from pyruvate-mediated inactivation, suggesting the presence of regulatory mechanisms common to both CO2 fixation and ammonia assimilation.  相似文献   

3.
Beggiatoa alba B18LD was investigated for its pathways of ammonia assimilation. The increase in growth yields ofB. alba with excess acetate was linear from 0.1 to 2.0 mM ammonia.B. alba had strong glutamine synthetase (GS) and glutamate synthase (GOGAT) activities, irrespective of the ammonia concentration in the medium. Glutamate dehydrogenase activity was not found, and alanine dehydrogenase (aminating) was observed only whenB. alba was grown at high (2.0 mM) ammonia. Methionine sulfoximine, an inhibitor of GS, inhibited growth ofB. alba irrespective of the ammonia concentration in the medium. Thus it appears the primary pathway for ammonia assimilation inB. alba is via the GS-GOGAT pathway at both low and high ammonia concentrations. Preliminary experiments were unable to discern if theB. alba GS is modified by covalent modification.Non-standard abbreviations GS Glutamine synthetase - GOGAT glutamate-oxoglutarate aminotransferase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - MSX methionine sulfoximine - GOT glutamate-oxaloacetate aminotransferase - GPT glutamate-pyruvate aminotransferase  相似文献   

4.
Rhodobacter sphaeroides can swim toward a wide range of attractants (a process known as taxis), propelled by a single rotating flagellum. The reversals of motor direction that cause tumbles in Eschericia coli taxis are replaced by brief motor stops, and taxis is controlled by a complex sensory system with multiple homologues of the E. coli sensory proteins. We tethered photosynthetically grown cells of R. sphaeroides by their flagella and measured the response of the flagellar motor to changes in light intensity. The unstimulated bias (probability of not being stopped) was significantly larger than the bias of tethered E. coli but similar to the probability of not tumbling in swimming E. coli. Otherwise, the step and impulse responses were the same as those of tethered E. coli to chemical attractants. This indicates that the single motor and multiple sensory signaling pathways in R. sphaeroides generate the same swimming response as several motors and a single pathway in E. coli, and that the response of the single motor is directly observable in the swimming pattern. Photo-responses were larger in the presence of cyanide or the uncoupler carbonyl cyanide 4-trifluoromethoxyphenylhydrazone (FCCP), consistent with the photo-response being detected via changes in the rate of electron transport.  相似文献   

5.
Ammonia can easily be assimilated into amino acids and used for silk-protein synthesis in the silkworm, Bombyx mori. To determine the metabolic pathway of ammonia assimilation, silkworm larvae were injected with methionine sulfoximine (MS), a specific inhibitor of glutamine synthetase (GS). Activity of GS in the fat body 2h after treatment with 400&mgr;g MS decreased to less than 10% of the control activity, whereas MS had no effect on the activity of glutamate dehydrogenase (GDH), another enzyme which could possibly be responsible for ammonia assimilation. Glutamine concentration in the hemolymph rapidly decreased after MS treatment, while the ammonia level in the hemolymph sharply increased. Glutamine concentration in the hemolymph 4h after injection decreased with increasing doses of MS, whereas ammonia concentration increased in proportion to the MS dose. MS strongly blocked the incorporation of (15)N label into silk-protein in larvae injected with (15)N ammonia acetate, while it slightly inhibited the incorporation of (15)N-amide glutamine into silk-protein. These results suggest that ammonia is mainly assimilated into glutamine via the action of GS and then converted into other amino acids for silk-protein synthesis and that GDH does not play a major role in ammonia assimilation in B. mori.  相似文献   

6.
《BBA》1985,809(1):44-50
Nitrogen fixation (acetylene reduction) and ammonia liberation were studied in a facultatively heterotrophic cyanobacterium. Autotrophically grown cells lost acetylene reduction activity when incubated under anaerobic conditions; the activity was maintained in the presence of methionine sulfoximine; or by pretreatment of the cells with a carbon supply. Heterotrophically grown cells maintained acetylene reduction activity anaerobically in the absence of methionine sulfoximine. Both cell types required light for maintenance of activity. The data indicate that methionine sulfoximine preserves the intracellular pool of reductant needed for nitrogenase. Autotrophs and heterotrophs both liberated ammonia when treated with methionine sulfoximine under nitrogen-fixing conditions. However, on treatment with methionine sulfoximine under anaerobiosis, heterotrophs also accumulated large amounts of intracellular ammonia in a pool which was diminished by the Photosystem II inhibitor, 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). DCMU enhanced ammonia liberation without affecting acetylene reduction activity, and hence changed the ratio of acetylene reduced to ammonia formed by the heterotrophs. These data suggest a role for Photosystem II in ammonia liberation by the cyanobacteria.  相似文献   

7.
D Kleiner  K Alef  A Hartmann 《FEBS letters》1983,164(1):121-123
The N2 fixing bacteria Klebsiella pneumoniae, Azospirillum brasilense, Rhodopseudomonas sphaeroides and Rhodospirillum rubrum, but not Azotobacter vinelandii accumulate the glutamine analogue methionine sulfoximine in the cell. In the accumulating cells methionine sulfoximine inhibits ammonium transport. Accumulation and inhibition are prevented by glutamine.  相似文献   

8.
When Lemna minor L. is supplied with the potent inhibitor of glutamine synthetase, methionine sulfoximine, rapid changes in free amino acid levels occur. Glutamine, glutamate, asparagine, aspartate, alanine, and serine levels decline concomitantly with ammonia accumulation. However, not all free amino acid pools deplete in response to this inhibitor. Several free amino acids including proline, valine, leucine, isoleucine, threonine, lysine, phenylalanine, tyrosine, histidine, and methionine exhibit severalfold accumulations within 24 hours of methionine sulfoximine treatment. To investigate whether these latter amino acid accumulations result from de novo synthesis via a methionine sulfoximine insensitive pathway of ammonia assimilation (e.g. glutamate dehydrogenase) or from protein turnover, fronds of Lemna minor were prelabeled with [15N]H4+ prior to supplying the inhibitor. Analyses of the 15N abundance of free amino acids suggest that protein turnover is the major source of these methionine sulfoximine induced amino acid accumulations. Thus, the pools of valine, leucine, isoleucine, proline, and threonine accumulated in response to the inhibitor in the presence of [15N]H4+, are 14N enriched and are not apparently derived from 15N-labeled precursors. To account for the selective accumulation of amino acids, such as valine, leucine, isoleucine, proline, and threonine, it is necessary to envisage that these free amino acids are relatively poorly catabolized in vivo. The amino acids which deplete in response to methionine sulfoximine (i.e. glutamate, glutamine, alanine, aspartate, asparagine, and serine) are all presumably rapidly catabolized to ammonia, either in the photorespiratory pathway or by alternative routes.  相似文献   

9.
Involvement of transport in Rhodobacter sphaeroides chemotaxis.   总被引:11,自引:9,他引:2       下载免费PDF全文
The chemotactic response to a range of chemicals was investigated in the photosynthetic bacterium Rhodobacter sphaeroides, an organism known to lack conventional methyl-accepting sensory transduction proteins. Strong attractants included monocarboxylic acids and monovalent cations. Results suggest that the chemotactic response required the uptake of the chemoeffector, but not its metabolism. If a chemoeffector could block the uptake of another attractant, it also inhibited chemotaxis to that attractant. Sodium benzoate was not an attractant but was a competitive inhibitor of the propionate uptake system. Binding in an active uptake system was therefore insufficient to cause a chemotactic response. At different concentrations, benzoate either blocked propionate chemotaxis or reduced the sensitivity of propionate chemotaxis, an effect consistent with its role as a competitive inhibitor of uptake. Bacteria only showed chemotaxis to ammonium when grown under ammonia-limited conditions, which derepressed the ammonium transport system. Both chemotaxis and uptake were sensitive to the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, suggesting an involvement of the proton motive force in chemotaxis, at least at the level of transport. There was no evidence for internal pH as a sensory signal. These results suggest a requirement for the uptake of attractants in chemotactic sensing in R. sphaeroides.  相似文献   

10.
The activity of the blood-brain neutral amino acid transport system is increased in rats infused with ammonium salts or rendered hyperammonemic by a portacaval anastomosis. This effect may be due to a direct action of ammonia or to some metabolic consequence of high ammonia levels, such as increased brain glutamine synthesis. To test these possibilities we evaluated the kinetic parameters of blood-brain transport of leucine and phenylalanine in control rats, in rats after continuous 24 h infusion of ammonium salts (NH4+ = 2.5 mmol X kg-1 X h-1), and in rats treated with methionine sulfoximine, an inhibitor of glutamine synthetase, before infusion of ammonium salts. In ammonia-infused rats without methionine sulfoximine treatment, the KD and Vmax of phenylalanine transport were increased, respectively, about 170% and 80% compared to controls, whereas the Km and Vmax of leucine transport were increased, respectively, about 100% and 200%. Electron microscopy demonstrated marked swelling of astrocytic processes around brain capillaries of ammonia-infused rats; however, capillary permeability to horseradish peroxidase apparently was not increased by ammonia infusion. Administration of methionine sulfoximine before ammonia infusion inhibited glutamine synthesis and prevented the changes in transport of leucine and phenylalanine, but apparently did not reverse the perivascular swelling. These results suggest that the ammonia-induced increase in the activity of transport of large neutral amino acids across the blood-brain barrier requires glutamine synthesis in brain, and is not a direct effect of ammonia.  相似文献   

11.
本文测定了浑球红假单胞菌(Rhodobacter sphaeroides)菌株601谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、谷氨酸脱氢酶(GDH)和丙氨酸脱氢酶(ADH)的活性。低氨时,GS/GOGAT活力高,GDH活力低,高氨时,GS/GOGAT活力低,GDH活力高。在以分子氮或低浓度氨为氮源的培养条件下,加入GS抑制刑MSX(L—methionine—DL—sulphoximine),细菌生长受到抑制。但是,生长在以谷氨酸为氮源的细菌则不受影响。上述结果表明,浑球红假单胞菌菌株601氨同化是通过GS/GOGAT途径和GDH途径。  相似文献   

12.
13.
Methionine sulfoximine induced release of ammonia from illuminated cells of Ankistrodesmus braunii (Naegeli) Brunnth, in normal air, but less in air enriched to 3% CO2. In normal air, methionine sulfoximine also induced glycolate release. Addition of either glutamate, glycine, or serine suppressed glycolate release, whereas glutamate and glycine at the same time stimulated ammonia release. The results indicate that inhibition of glutamine synthetase and thereby inhibition of photorespiratory nitrogen cycling restricts the sink capacity for glycolate in the photorespiratory carbon cycle. An external supply of glutamate, glycine, or serine seems to stimulate glyoxylate transamination and thus partly restores the sink capacity. Calculations of total glycolate formation rates in air from glycolate and ammonia release rates in the presence of methionine sulfoximine and glutamate revealed values of approximately 20 micromoles glycolate per milligram chlorophyll per hour on the average. Similar calculations led to an estimated rate of photorespiratory ammonia release in air, in the absence of methionine sulfoximine, of about 10 micromoles per milligram chlorophyll per hour on the average, a value comparable to the primary nitrogen assimilation rate of 8 micromoles per milligram chlorophyll per hour.  相似文献   

14.
Ammonium and methylammonium transport in Rhodobacter sphaeroides.   总被引:2,自引:2,他引:0       下载免费PDF全文
Rhodobacter sphaeroides maintained intracellular ammonium pools of 1.1 to 2.6 mM during growth in several fixed nitrogen sources as well as during diazotrophic growth. Addition of 0.15 mM NH4+ to washed, nitrogen-free cell suspensions was followed by linear uptake of NH4+ from the medium and transient formation of intracellular pools of 0.9 to 1.5 mM NH4+. Transport of NH4+ was shown to be independent of assimilation by glutamine synthetase because intracellular pools of over 1 mM represented NH4+ concentration gradients of at least 100-fold across the cytoplasmic membrane. Ammonium pools of over 1 mM were also found in non-growing cell suspensions in nitrogen-free medium after glutamine synthetase was inhibited with methionine sulfoximine. In NH4+-free cell suspensions, methylammonium (14CH3NH3+) was taken up rapidly, and intracellular concentrations of 0.4 to 0.5 mM were maintained. The 14CH3NH3+ pool was not affected by methionine sulfoximine. Unlike NH4+ uptake, 14CH3NH3+ uptake in nitrogen-free cell suspensions was repressed by growth in NH4+. These results suggest that R. sphaeroides may produce an NH4+-specific transport system in addition to the NH4+/14CH3NH3+ transporter. This second transporter is able to produce normal-size NH4+ pools but has very little affinity for 14CH3NH3+ and is not repressed by growth in high concentrations of NH4+.  相似文献   

15.
In whole cells of Rhodopseudomonas sphaeroides, nitrogen fixation, as measured by hydrogen production and acetylene reduction, was totally inhibited by micromolar concentrations of ammonia. This inhibition could not be duplicated by glutamate or glutamine alone. The inhibition by ammonia was abolished by methionine sulfoximine, a glutamine synthetase inhibitor. Inhibition by glutamine was complete in the presence of methionine sulfone, a preferential inhibitor of glutamate synthase, presumably by permitting a rise in the glutamine pool. The results indicated that the level of the glutamine pool controlled the activity of nitrogenase. None of these effects could be duplicated with cell-free nitrogenase, indicating there is probably a mediator which responds to the glutamine pool and inhibits nitrogenase, rather than glutamine itself being a direct inhibitor.  相似文献   

16.
Abstract: Liver failure, or shunting of intestinal blood around the liver, results in hyperammonemia and cerebral dysfunction. Recently it was shown that ammonia caused some of the metabolic signs of hepatic encephalopathy only after it was metabolized by glutamine synthetase in the brain. In the present study, small doses of methionine sulfoximine, an inhibitor of cerebral glutamine synthetase, were given to rats either at the time of portacaval shunting or 3–4 weeks later. The effects on several characteristic cerebral metabolic abnormalities produced by portacaval shunting were measured 1–3 days after injection of the inhibitor. All untreated portacaval-shunted rats had elevated plasma and brain ammonia concentrations, increased brain glutamine and tryptophan content, decreased brain glucose consumption, and increased permeability of the blood–brain barrier to tryptophan. All treated rats had high ammonia concentrations, but the brain glutamine content was normal, indicating inhibition of glutamine synthesis. One day after shunting and methionine sulfoximine administration, glucose consumption, tryptophan transport, and tryptophan brain content remained near control values. In the 3–4-week-shunted rats, which were studied 1–3 days after methionine sulfoximine administration, the effect was less pronounced. Brain glucose consumption and tryptophan content were partially normalized, but tryptophan transport was unaffected. The results agree with our earlier conclusion that glutamine synthesis is an essential step in the development of cerebral metabolic abnormalities in hyperammonemic states.  相似文献   

17.
Rhodobacter sphaeroides is chemotactic to glutamate and most other amino acids. In Escherichia coli , chemotaxis involves a membrane-bound sensor that either binds the amino acid directly or interacts with the binding protein loaded with the amino acid. In R. sphaeroides , chemotaxis is thought to require both the uptake and the metabolism of the amino acid. Glutamate is accumulated by the cells via a binding protein-dependent system. To determine the role of the binding protein and transport in glutamate taxis, mutants were created by Tn 5 insertion mutagenesis and selected for growth in the presence of the toxic glutamine analogue γ-glutamyl-hydrazide. One of the mutants, R. sphaeroides MJ7, was defective in glutamate uptake but showed wild-type levels of binding protein. The mutant showed no chemotactic response to glutamate. Both glutamate uptake and chemotaxis were recovered when the gltP gene, coding for the H+-linked glutamate carrier of E. coli , was expressed in R. sphaeroides MJ7. It is concluded that the chemotactic response to glutamate strictly requires uptake of glutamate, supporting the view that intracellular metabolism is needed for chemotaxis in R. sphaeroides .  相似文献   

18.
Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N -oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N -oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the ΔpH component of the proton motive force. These data, together with those concerning response to metals ( Bencharit and Ward, 2005 ), support the idea that, in S. oneidensis , taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.  相似文献   

19.
Rhodobacter sphaeroides exhibits two behavioral responses when exposed to some compounds: (i) a chemotactic response that results in accumulation and (ii) a sustained increase in swimming speed. This latter chemokinetic response occurs without any apparent long-term change in the size of the electrochemical proton gradient. The results presented here show that the chemokinetic response is separate from the chemotactic response, although some compounds can induce both responses. Compounds that caused only chemokinesis induced a sustained increase in the rate of flagellar rotation, but chemoeffectors which were also chemotactic caused an additional short-term change in both the stopping frequency and the duration of stops and runs. The response to a change in chemoattractant concentration was a transient increase in the stopping frequency when the concentration was reduced, with adaptation taking between 10 and 60 s. There was also a decrease in the stopping frequency when the concentration was increased, but adaptation took up to 60 min. The nature and duration of both the chemotactic and chemokinetic responses were concentration dependent. Weak organic acids elicited the strongest chemokinetic responses, and although many also caused chemotaxis, there were conditions under which chemokinesis occurred in the absence of chemotaxis. The transportable succinate analog malonate caused chemokinesis but not chemotaxis, as did acetate when added to a mutant able to transport but not grow on acetate. Chemokinesis also occurred after incubation with arsenate, conditions under which chemotaxis was lost, indicating that phosphorylation at some level may have a role in chemotaxis. Aspartate was the only chemoattractant amino acid to cause chemokinesis. Glutamate caused chemotaxis but not chemokinesis. These data suggest that (i) chemotaxis and chemokinesis are separate responses, (ii) metabolism is required for chemotaxis but not chemokinesis, (iii) a reduction in chemoattractant concentration may cause the major chemotactic signal, and (iv) a specific transport pathway(s) may be involved in chemokinetic signalling in R. sphaeroides.  相似文献   

20.
Barley (Hordeum vulgare L. cv Golden Promise) plants were grown in a continuous culture system in which the root and shoot ammonia and amino acid levels were constant over a 6-hour experimental period. Methionine sulfoximine (MSO), 1 millimolarity when added to the culture medium, caused a total inactivation of root glutamine synthetase with little effect on the shoot enzyme. Root ammonia levels increased and glutamine levels decreased, irrespective of whether the plants were grown in 1 millimolar nitrate or 1 millimolar ammonia. Levels of glutamate, aspartate, serine, threonine, and asparagine all increased. There was little alteration in the amino acid and ammonia levels in the shoot, suggesting that MSO is not rapidly transported.

The addition of azaserine (25 micrograms per milliliter) to nitrate-grown plants caused a rapid increase in root ammonia, glutamine, and serine levels with a corresponding decrease in glutamate, aspartate, and alanine. Glutamine levels also increased in the shoot.

The in vivo effect of MSO and azaserine was as would be predicted by their known in vitro inhibitory action if the glutamine synthetase/glutamate synthase pathway of ammonia assimilation was in operation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号