首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing efficient organic solar cells (OSCs) with relatively thick active layer compatible with the roll to roll large area printing process is an inevitable requirement for the commercialization of this field. However, typical laboratory OSCs generally exhibit active layers with optimized thickness around 100 nm and very low thickness tolerance, which cannot be suitable for roll to roll process. In this work, high performance of thick‐film organic solar cells employing a nonfullerene acceptor F–2Cl and a polymer donor PM6 is demonstrated. High power conversion efficiencies (PCEs) of 13.80% in the inverted structure device and 12.83% in the conventional structure device are achieved under optimized conditions. PCE of 9.03% is obtained for the inverted device with active layer thickness of 500 nm. It is worth noting that the conventional structure device still maintains the PCE of over 10% when the film thickness of the active layer is 600 nm, which is the highest value for the NF‐OSCs with such a large active layer thickness. It is found that the performance difference between the thick active layer films based conventional and inverted devices is attributed to their different vertical phase separation in the active layers.  相似文献   

2.
A pair of polymers, PBDTBT and PBDTDTBT , was synthesized for application in polymer solar cells (PSCs). Although these two polymers have similar absorption bands and molecular energy levels, PBDTDTBT exhibits much better photovoltaic performance in polymer solar cell (PSC) devices with power conversion efficiency (PCE) of 7.4%. To understand the differences between PBDTDTBT and PBDTBT , we have investigated the correlations of the molecular structure, morphology, dynamics and efficiency of these two polymers. A theoretical investigation using density functional theory (DFT) and time‐dependent DFT (TDDFT) has been employed to investigate the electron density and electron delocalization extent of the unimers. TEM data showed that PBDTDTBT phase separates from PC71BM, while PBDTBT suffers from having a proper morphology on different processing conditions. Grazing incidence wide angle X‐ray diffraction (GIWAXD) was used to probe the crystal structure of the polymers in thin film. A polymorph crystal structure was observed for PBDTBT . Grazing incidence small angle X‐ray scattering (GISAXS) was used to probe the size scale of phase separation, with an optimized 25 nm feature size observed for PBDTDTBT /PC71BM blends, which agrees well with TEM results. Femtosecond transient absorption (TA) spectroscopy was used to probe the dynamics of the fundamental processes in organic photovoltaic (OPV) materials, such as charge separation and recombination. The enhanced absorption coefficient, good charge separation, optimal phase separation and higher charge mobility all contribute to the high PCE of the PBDTDTBT /PC71BM devices.  相似文献   

3.
Significant development has been achieved in nonfullerene organic solar cells. However, most of the high‐efficiency nonfullerene systems are composed of polymer donors and fused‐ring acceptors, and only a few small molecule donors can work well. Herein, a new A–D–A small molecule donor named NDTSR with naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) as building blocks is synthesized. Two energy levels well‐matched fused‐ring acceptors ITIC and IDIC are chosen to construct all‐small‐molecule solar cells with NDTSR, respectively. When mixed with IDIC, a high power conversion efficiency (PCE) of 8.05% is achieved, which is the highest efficiency for NDT‐based small molecule donor. However, the NDTSR:ITIC system only exhibits a low PCE of 1.77%. The big difference in the performance of these two systems should be attributed to the different morphology and phase separation resulting from the crystallinity and aggregation ability of the acceptors. The results demonstrate that NDT‐based small molecule is a promising candidate donor for all‐small‐molecule systems, while the crystallinity of fused‐ring acceptors is a critical factor for optimizing the phase separation in the active layer.  相似文献   

4.
Polymer solar cells (PSCs) are fabricated without solvent additives using a low‐bandgap polymer, PBDTTT‐C‐T, as the donor and [6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PC61BM) as the acceptor. Donor‐acceptor blend and layer‐by‐layer (LL) solution process are used to form active layers. Relative to the blend devices, the LL devices exhibit stronger absorption, better vertical phase separation, higher hole and electron mobilities, and better charge extraction at correct electrodes. As a result, after thermal annealing the LL devices exhibit an average power conversion efficiency (PCE) of 6.86%, which is much higher than that of the blend devices (4.31%). The best PCE of the LL devices is 7.13%, which is the highest reported for LL processed PSCs and among the highest reported for PC61BM‐based single‐junction PSCs.  相似文献   

5.
The phase separation of lipids is believed to be responsible for the formation of lipid rafts in biological cell membrane. In the present work, a continuum model and a particle model are constructed to study the phase separation in binary lipid membrane containing inclusions under stationary shear flow. In each model, employing the cell dynamical system (CDS) approach, the kinetic equations of the confusion-advection process are numerically solved. Snapshot figures of the phase morphology are performed to intuitively display such phase evolving process. Considering the effects from both the inclusions and the shear flow, the time growth law of the characteristic domain size is discussed.  相似文献   

6.
The ratio of the donor and acceptor components in bulk heterojunction (BHJ) organic solar cells is a key parameter for achieving optimal power conversion efficiency (PCE). However, it has been recently found that a few BHJ blends have compositional tolerance and achieve high performance in a wide range of donor to acceptor ratios. For instance, the X2 :PC61BM system, where X2 is a molecular donor of intermediate dimensions, exhibits a PCE of 6.6%. Its PCE is relatively insensitive to the blend ratio over the range from 7:3 to 4:6. The effect of blend ratio of X2 /PC61BM on morphology and device performance is therefore systematically investigated by using the structural characterization techniques of energy‐filtered transmission energy microscopy (EF‐TEM), resonant soft X‐ray scattering (R‐SoXS) and grazing incidence wide angle X‐ray scattering (GIWAXS). Changes in blend ratio do not lead to obvious differences in morphology, as revealed by R‐SoXS and EF‐TEM. Rather, there is a smooth evolution of a connected structure with decreasing domain spacing from 8:2 to 6:4 blend ratios. Domain spacing remains constant from 6:4 to 4:6 blend ratios, which suggests the presence of continuous phases with proper domain size that may provide access for charge carriers to reach their corresponding electrodes.  相似文献   

7.
A scaling effort on perovskite solar cells is presented where the device manufacture is progressed onto flexible substrates using scalable techniques such as slot‐die roll coating under ambient conditions. The printing of the back electrode using both carbon and silver is essential to the scaling effort. Both normal and inverted device geometries are explored and it is found that the formation of the correct morphology for the perovskite layer depends heavily on the surface upon which it is coated and this has significant implications for manufacture. The time it takes to form the desired layer morphology falls in the range of 5–45 min depending on the perovskite precursor, where the former timescale is compatible with mass production and the latter is best suited for laboratory work. A significant loss in solar cell performance of around 50% is found when progressing to using a fully scalable fabrication process, which is comparable to what is observed for other printable solar cell technologies such as polymer solar cells. The power conversion efficiency (PCE) for devices processed using spin coating on indium tin oxide (ITO)‐glass with evaporated back electrode yields a PCE of 9.4%. The same device type and active area realized using slot‐die coating on flexible ITO‐polyethyleneterphthalate (PET) with a printed back electrode gives a PCE of 4.9%.  相似文献   

8.
The current work reports a high power conversion efficiency (PCE) of 9.54% achieved with nonfullerene organic solar cells (OSCs) based on PTB7‐Th donor and 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene) (ITIC) acceptor fabricated by doctor‐blade printing, which has the highest efficiency ever reported in printed nonfullerene OSCs. Furthermore, a high PCE of 7.6% is realized in flexible large‐area (2.03 cm2) indium tin oxide (ITO)‐free doctor‐bladed nonfullerene OSCs, which is higher than that (5.86%) of the spin‐coated counterpart. To understand the mechanism of the performance enhancement with doctor‐blade printing, the morphology, crystallinity, charge recombination, and transport of the active layers are investigated. These results suggest that the good performance of the doctor‐blade OSCs is attributed to a favorable nanoscale phase separation by incorporating 0.6 vol% of 1,8‐diiodooctane that prolongs the dynamic drying time of the doctor‐bladed active layer and contributes to the migration of ITIC molecules in the drying process. High PCE obtained in the flexible large‐area ITO‐free doctor‐bladed nonfullerene OSCs indicates the feasibility of doctor‐blade printing in large‐scale fullerene‐free OSC manufacturing. For the first time, the open‐circuit voltage is increased by 0.1 V when 1 vol% solvent additive is added, due to the vertical segregation of ITIC molecules during solvent evaporation.  相似文献   

9.
Compared with nonfullerene‐based polymer solar cells, all‐small‐molecule solar cells normally show low power conversion efficiencies (PCEs) due to their low fill factors (FFs). Molecular stacking orientation and phase separation are the main factors affecting the performance of all‐small‐molecule solar cells. In this work, two liquid‐crystalline small‐molecule donors are designed and synthesized and a novel nonfullerene acceptor with good crystallinity developed. Owing to the face‐on orientation of the component molecules and appropriate phase separation in the active layer, a high FF of over 70% and a PCE of 10.7% are obtained from the resulting solar cells; these values are among the best obtained thus far for all‐small‐molecule solar cells. The high FF reported here is significant for a further design of high‐performance all‐small‐molecule solar cells.  相似文献   

10.
Wang X  Ching CB 《Chirality》2002,14(10):798-805
Nadolol, a beta-blocker used in the management of hypertension and angina pectoris, has three chiral centers and is currently marketed as an equal mixture of its four stereoisomers. Enantiomeric separation of nadolol by high-performance liquid chromatography was studied on a column packed with novel heptakis (6-azido-6-deoxy-2, 3-di-O-phenylcarbamolyted) beta-cyclodextrin bonded chiral stationary phase. The retention behavior and resolution of nadolol enantiomers were investigated and discussed with respect to the mobile phase composition and flow rate, pH, ionic strength, and temperature. The optimal separation condition was found; the mobile phase contained 80% buffer solution (1% triethylamine acetate, pH 5.5) and 20% methanol with 0.3 ml/min mobile phase flow rate at a temperature of 20 degrees C. At the optimal conditions, resolution of three stereoisomers of nadolol was obtained with a complete separation of the most active enantiomer, (RSR)-nadolol. Thermodynamic properties including enthalpy and entropy change of binding to the CSP for the enantiomeric separation were also determined.  相似文献   

11.
Solvent effects on the morphology of diketopyrrolopyrrole (DPP)‐based low band gap polymer (PDPPBT):phenyl‐C71‐butyric acid methyl ester (PC71BM) blends are studied systematically using a mixture of a non‐aromatic polar primary solvent with high boiling point (b.p.) secondary solvents of increasing polarities. An unfavorable solvent‐PC71BM interaction, due to a polarity mismatch, leads to significantly different morphology, also affecting the growth process of polymer crystallites. Non‐aromatic polar solvent produces large PC71BM aggregates that increase in size with the addition of non‐polar secondary solvents. The size scales of the aggregates decrease markedly when polar solvents are instead used as the secondary solvents. This processing method fundamentally changes the behavior of phase separation, creating a percolated fibrillar type network structure. Moreover, polar secondary solvents with lower vapor pressures reduce the interfibrillar distances that enhance the device performance even more. Power conversion efficiencies (PCE) of 0.03% to 5% are obtained, depending on the solvent system used.  相似文献   

12.
The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution‐deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p‐DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS‐containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization.  相似文献   

13.
To advance polymer solar cells (PSCs) toward real‐world applications, it is crucial to develop materials that are compatible with a low‐cost large‐scale manufacturing technology. In this context, a practically useful polymer should fulfill several critical requirements: the capability to provide high power conversion efficiencies (PCEs) via low‐cost fabrication using environmentally friendly solvents under mild thermal conditions, resulting in an active layer that is thick enough to minimize defects in large‐area films. Here, the development of new photovoltaic polymers is reported through rational molecular design to meet these requirements. Benzodithiophene (BDT)‐difluorobenzoxadiazole (ffBX)‐2‐decyltetradecyl (DT), a wide‐bandgap polymer based on ffBX and BDT emerges as the first example that fulfills the qualifications. When blended with a low‐cost acceptor (C60‐fullerene derivative), BDT‐ffBX‐DT produces a PCE of 9.4% at active layer thickness over 250 nm. BDT‐ffBX‐DT devices can be fabricated from nonhalogenated solvents at low processing temperature. The success of BDT‐ffBX‐DT originates from its appropriate electronic structure and charge transport characteristics, in combination with a favorable face‐on orientation of the polymer backbone in blends, and the ability to form proper phase separation morphology with a fibrillar bicontinuous interpenetrating network in bulk‐heterojunction films. With these characteristics, BDT‐ffBX‐DT represents a meaningful step toward future everyday applications of polymer solar cells.  相似文献   

14.
The challenge of continuous printing in high‐efficiency large‐area organic solar cells is a key limiting factor for their widespread adoption. A materials design concept for achieving large‐area, solution‐coated all‐polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor is presented. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small‐scale solution shearing coater to a large‐scale continuous roll‐to‐roll (R2R) printer. Large‐area all‐polymer solar cells are continuously roll‐to‐roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R‐coated active layer organic materials on flexible substrate.  相似文献   

15.
High power conversion efficiency (PCE), long-term stability, and mechanical robustness are prerequisites for the commercial applications of organic solar cells (OSCs). In this study, a new star-shaped trimer acceptor (TYT-S) is developed and high-performance OSCs with a PCE of 19.0%, high photo-stability (t80% lifetime = 2600 h under 1-sun illumination), and mechanical robustness with a crack-onset strain (COS) of 21.6% are achieved. The isotropic molecular structure of TYT-S affords efficient multi-directional charge transport and high electron mobility. Furthermore, its amorphous structure prevents the formation of brittle crystal-to-crystal interfaces, significantly enhancing the mechanical properties of the OSC. As a result, the TYT-S-based OSCs demonstrate a significantly higher PCE (19.0%) and stretchability (COS = 21.6%) than the linear-shaped trimer acceptor (TYT-L)-based OSCs (PCE = 17.5% and COS = 6.4%) and the small-molecule acceptor (MYT)-based OSCs (PCE = 16.5% and COS = 1.3%). In addition, the increased molecular size of TYT-S, relative to that of MYT and dimer (DYT), suppresses the diffusion kinetics of the acceptor molecules, substantially improving the photostability of the OSCs. Finally, to effectively demonstrate the potential of TYT-S, intrinsically stretchable (IS)-OSCs are constructed. The TYT-S-based IS-OSCs exhibit high device stretchability (strain at PCE80% = 31%) and PCE of 14.4%.  相似文献   

16.
We present a study on the morphology and kinetics of depletion-induced phase separation in aqueous xanthan-colloid mixtures with light microscopy and small angle light scattering (SALS), using fluorinated colloids with a refractive index close to that of water to prevent complications of multiple scattering. Microscopy with the direction of observation perpendicular to gravity enabled us to observe the development of the microstructure during the entire phase separation process including the formation of a macroscopic interface. Bicontinuous structures typical of a spinodal decomposition mechanism were observed at early times. These structures coarsened in time until hydrodynamic flow resulted in lane formation. Close to the binodal, a nucleation-and-growth mechanism was observed with formation of droplets. The coarsening kinetics were studied in more detail with SALS and turbidity measurements. Above polysaccharide concentrations at which entanglements become dominant, a slower coarsening and macroscopic phase separation were found because of the high continuous phase viscosity.  相似文献   

17.
Dipalmitoylphosphatidylcholine (DPPC) is the most abundant component in pulmonary surfactants and is believed to be responsible for maintaining low surface tension in alveoli during breathing. In this work, a kinetic model is introduced that describes the phase separation in DPPC films that produces the liquid-condensed (LC) and liquid-expanded (LE) fractions, which differ according to the area density of DPPC. The phase separation in an initially homogeneous film has been investigated numerically. Furthermore, explicit simulations of periodic compression-expansion cycles are reported. In this process, a moderate change of the surface area resulted in a dramatic change in the total amount of LC fraction, as well as in the surface morphology. Depending on the extent of the film's compression, the simulated surface morphologies comprised individual nanosized LC domains embedded in the LE fraction, interconnected networks of such domains, or continuous LC films with nanopores. Equilibration of the total area of the LC nanodomains occurred over a few milliseconds, indicating that the rate of the LE-LC phase transformation is sufficient for maintaining low surface tension during breathing, and that nanoscale LC domains are likely to play a major role in this process. Unlike the total content of the LC fraction, which stabilized quickly, the average size of LC nanodomains showed a tendency to increase slowly, at a rate determined by the diffusivity of DPPC. The computed average domain size seems to be compatible with published experiments for DPPC films. The numeric results also elucidate the distinction between thermodynamically determined and kinetically limited structural properties during phase separation in the major structure-forming component of pulmonary surfactants.  相似文献   

18.
This study provides new evidence on a long postulated mechanism of phase separation in a polymer/fullerene mixture during spin coating for controlled nanodomains of oriented crystallization and heterojunctions that favor applications in polymer solar cells (PSCs). The simultaneous nanoscale phase separation and crystallization during spin coating of the mixture are traced using in situ grazing‐incidence small‐ and wide‐angle X‐ray scattering. Combined with the complimentary results from time‐resolved optical reflectance spectroscopy, transient stratification of the liquid film during the transition from the flow‐ to evaporation‐dominated stage of spin coating is disclosed; the vertical liquid–liquid phase separation incubates a supersaturated skin layer where fullerene aggregation and polymer crystallization occur and develop concomitantly. Shortly after the transition, the near‐surface structural development is largely pinned, leaving the solvent‐rich bottom layer to diminish via solvent diffusion and evaporation through the thickened skin layer that finally condenses into the spin‐coated film upon solvent depletion. The shear‐enhanced surface layering and supersaturation for the surface‐down nanostructural development are unexpected in all the existing structural models for PSCs. The mechanistic understanding of coupled vertical phase separation and local nanosegregation provides new insights and alternative strategy to the morphology control of spin‐cast PSC active layers in particular and various solution‐processed polymeric films in general.  相似文献   

19.
A new n‐type organic semiconductor (n‐OS) acceptor IDTPC with n‐hexyl side chains is developed. Compared to side chains with 4‐hexylphenyl counterparts (IDTCN), such a design endows the acceptor of IDTPC with higher electron mobility, more ordered face‐on molecular packing, and lower band gap. Therefore, the IDTPC‐based polymer solar cells (PSCs) with a newly developed wide bandgap polymer PTQ10 as donor exhibit the maximum power conversion efficiency (PCE) of 12.2%, a near 65% improvement in PCE relative to the IDTCN‐based control device. Most importantly, the IDTPC‐based device is insensitive to the thickness of the active layer from 70 to 505 nm, which still gives a PCE of 10.0% with the active‐layer thickness of 400 nm. To the best of the authors' knowledge, a PCE of 10.0% is the highest value for the nonfullerene PSCs with an active layer thicker than 400 nm. These results reveal that the blend of PTQ10 and IDTPC exhibits great potential for highly efficient nonfullerene PSCs and large‐area device fabrication.  相似文献   

20.
As a predominant fabrication method of organic solar cells (OSCs), casting of a bulk heterojunction (BHJ) structure presents overwhelming advantages for achieving higher power conversion efficiency (PCE). However, long‐term stability and mechanical strength are significantly crucial to realize large‐area and flexible devices. Here, controlling blend film morphology is considered as an effective way toward co‐optimizing device performance, stability, and mechanical properties. A PCE of 12.27% for a P‐i‐N‐structured OSC processed by sequential blade casting (SBC) is reported. The device not only outperforms the as‐cast BHJ devices (11.01%), but also shows impressive stability and mechanical properties. The authors corroborate such enhancements with improved vertical phase separation and purer phases toward more efficient transport and collection of charges. Moreover, adaptation of SBC strategy here will result in thermodynamically favorable nanostructures toward more stable film morphology, and thus improving the stability and mechanical properties of the devices. Such co‐optimization of OSCs will pave ways toward realizing the highly efficient, large‐area, flexible devices for future endeavors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号