首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ubiquitous energy harvesting technologies require new types of renewable, sustainable, and clean energy to solve the problems of fossil fuels. Although various nanogenerators have been developed over the last decade, low current density, requirements for complicated management circuits, generation of direct current (DC) outputs, and significant performance degradation under humid atmospheres have been problems limiting practical applications. This paper reports that the tribovoltaic and moisture-enabled electricity generation effects can be achieved in a layered double hydroxide (LDH) by applying a metal brushing mode. The ZnAl-LDH shows enhanced tribovoltaic nanogenerator (TVNG) performance even in a high-humidity environment coupled with the moisture-enabled electricity generated by the concentration gradient of a water molecule through the interlamellar structures of the LDHs. The spontaneous dissociation of water in the interior of LDHs removes the hole generated by the tribovoltaic effect, allowing high efficiency of an output voltage of 693.38 mV and current density of 65.48 mA m−2 even under low-applied force (≈3.5 mN) at relative humidity 80%. The proposed TVNG provides a proof of concept for an all-in-one device consisting of a generator and capacitor because the LDH reveals a spontaneous charging performance similar to that of a capacitor.  相似文献   

2.
This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from natural gas‐fired combustion turbine (NGCT) and combined‐cycle (NGCC) systems. The smaller set of LCAs of liquefied natural gas power systems and natural gas plants with carbon capture and storage were also collected, but analyzed to a lesser extent. A meta‐analytical process we term “harmonization” was employed to align several system boundaries and technical performance parameters to better allow for cross‐study comparisons, with the aim of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. Of over 250 references identified, 42 passed screens for technological relevance and study quality, providing a total of 69 estimates for NGCT and NGCC. Harmonization increased the median estimates in each category as a result of several factors not typically considered in the previous research, including the regular clearing of liquids from a well, and consolidated the interquartile range for NGCC to 420 to 480 grams of carbon dioxide equivalent per kilowatt‐hour (g CO2‐eq/kWh) and for NGCT to 570 to 750 g CO2‐eq/kWh, with medians of 450 and 670 CO2‐eq/kWh, respectively. Harmonization of thermal efficiency had the largest effect in reducing variability; methane leakage rate is likely similarly influential, but was unharmonized in this assessment as a result of the significant current uncertainties in its estimation, an area that is justifiably receiving significant research attention.  相似文献   

3.
As an emerging biotechnology capable of removing contaminants and producing electricity, microbial fuel cells (MFCs) hold a promising future in wastewater treatment. However, several main problems, including the high internal resistance (Rin), low power output, expensive material, and complicated configuration have severely hindered the large-scale application of MFCs. The study targeted these challenges by developing a novel MFC system, granular activated carbon single-chamber MFC, termed as GAC-SCMFC. The batch tests showed that GAC was a good substitute for carbon cloth and GAC-SCMFCs generated high and stable power outputs compared with the traditional two-chamber MFCs (2CMFCs). Critical operational parameters (i.e. wastewater substrate concentrations, GAC amount, electrode distance) affecting the performance of GAC-SCMFCs were examined at different levels. The results showed that the Rin gradually decreased from 60 Ω to 45 Ω and the power output increased from 0.2 W/m3 to 1.2 W/m3 when the substrate concentrations increased from 100 mg/L to 850 mg/L. However, at high concentrations of 1000–1500 mg/L, the power output leveled off. The Rin of MFCs decreased 50% when the electrode distance was reduced from 7.5 cm to 1 cm. The highest power was achieved at the electrode distance of 2 cm. The power generation increased with more GAC being added in MFCs due to the higher amount of biomass attached. Finally, the multi-anode GAC-SCMFCs were developed to effectively collect the electrons generated in the GAC bed. The results showed that the current was split among the multiple anodes, and the cathode was the limiting factor in the power production of GAC-SCMFCs.  相似文献   

4.
Recirculating aquaculture systems (RAS) are an alternative technology to tackle the major environmental challenges associated with conventional cage culture systems. In order to systematically assess the environmental performance of RAS farming, it is important to take the whole life cycle into account so as to avoid ad hoc and suboptimal environmental measures. So far, the application of life cycle assessment (LCA) in aquaculture, especially to indoor RAS, is still in progress. This study reports on an LCA of Atlantic salmon harvested at an indoor RAS farm in northern China. Results showed that 1 tonne live‐weight salmon production required 7,509 kWh farm‐level electricity and generated 16.7 tonnes of CO2 equivalent (eq), 106 kg of SO2 eq, 2.4 kg of P eq, and 108 kg of N eq (cradle‐to‐farm gate). In particular, farm‐level electricity use and feed product were identified as primary contributors to eight of nine impact categories assessed (54–95% in total), except the potential marine eutrophication (MEU) impact (dominated by the grow‐out effluents). Among feed ingredients (on a dry‐weight basis), chicken meal (5%) and krill meal (8%) dominated six and three, respectively, of the nine impact categories. Suggested environmental improvement measures for this indoor RAS farm included optimization of stocking density, feeding management, grow‐out effluent treatment, substitution of feed ingredients, and selection of electricity generation sources. In a generic context, this study can contribute to a better understanding of the life cycle environmental impacts of land‐based salmon RAS operations, as well as science‐based communication among stakeholders on more eco‐friendly farmed salmon.  相似文献   

5.
As electrochemically active bacteria play an important role in microbial fuel cells (MFCs), it is necessary to get a comprehensive understanding of their electrogenesis mechanisms. In this study, a new electrochemically active bacterium, Klebsiella sp. ME17, was employed into an “H” typed MFC for electrogenesis, with glucose as the electron donor. The maximum power density was 1,209 mW/m2 at a resistance of 340 Ω and the maximum current was 1.47 mA. Given the original anode medium, fresh medium, and the supernatant of the anode medium in the same MFC, respectively, the polarization curves illustrated that the strain produced mediators to promote extracellular electron transfer. The anode medium supernatant was electrochemically active, based on cyclic voltammogram, and the supernatant was very likely to contain quinone-like substances, as indicated by spectrophotometric and excitation–emission matrix fluorescence spectroscopy analysis. Further investigation on the color and ultraviolet absorbance at 254 nm of the filtered anode medium showed that the redox states of mediators strongly associated with the electricity generation states in MFCs.  相似文献   

6.
Purpose

The overall aim of this study is to contribute to the creation of LCA database on electricity generation systems in Ethiopia. This study specifically estimates the environmental impacts associated with wind power systems supplying high voltage electricity to the national grid. The study has regional significance as the Ethiopian electric system is already supplying electricity to Sudan and Djibouti and envisioned to supply to other countries in the region.

Materials and methods

Three different grid-connected wind power systems consisting of four different models of wind turbines with power rates between 1 and 1.67 MW were analyzed for the situation in Ethiopia. The assessment takes into account all the life cycle stages of the total system, cradle to grave, considering all the processes related to the wind farms: raw material acquisition, manufacturing of main components, transporting to the wind farm, construction, operation and maintenance, and the final dismantling and waste treatment. The study has been developed in line with the main principles of the ISO 14040 and ISO 14044 standard procedures. The analysis is done using SimaPro software 8.0.3.14 multi-user, Ecoinvent database version 3.01, and ReCiPe 2008 impact assessment method. The assumed operational lifetime as a baseline is 20 years.

Results and discussion

The average midpoint environmental impact of Ethiopian wind power system per kWh electricity generated is for climate change: 33.6 g CO2 eq., fossil depletion: 8 g oil eq., freshwater ecotoxicity: 0.023 g 1,4-DCB eq., freshwater eutrophication: 0.005 g N eq., human toxicity: 9.9 g 1,4-DCB eq., metal depletion: 18.7 g Fe eq., marine ecotoxicity: 0.098 g 1,4-DCB eq., particulate matter formation: 0.097 g PM10 eq., photochemical oxidant formation: 0.144 g NMVOC, and terrestrial acidification: 0.21 g SO2 eq. The pre-operation phase that includes the upstream life cycle stage is the largest contributor to all the environmental impacts, with shares ranging between 82 and 96%. The values of cumulative energy demand (CED) and energy return on investment (EROI) for the wind power system are 0.393 MJ and 9.2, respectively.

Conclusion

The pre-operation phase is the largest contributor to all the environmental impact categories. The sensitivity and scenario analyses indicate that changes in wind turbine lifespans, capacity factors, exchange rates for parts, transport routes, and treatment activities would result in significant changes in the LCA results.

  相似文献   

7.
Goal and Scope This study estimates the life cycle inventory (LCI) of the electricity system in the United States, including the 10 NERC (North American Electric Reliability Council) regions, Alaska, Hawaii, off-grid non-utility plants and the US average figures. The greenhouse gas emissions associated with the United States electricity system are also estimated. Methods The fuel mix of the electricity system based on year 2000 data is used. The environmental burdens associated with raw material extraction, petroleum oil production and transportation for petroleum oil and natural gas to power plants are adopted from the DEAMTM LCA database. Coal transportation from a mining site to a power plant is specified with the data from the Energy Information Administration (EIA), which includes the mode of transportation as well as the distance traveled. The gate-to-gate environmental burdens associated with generating electricity from a fossil-fired power plant are obtained from the DEAMTM LCA database and the eGRID model developed by the United States Environmental Protection Agency. For nuclear power plants and hydroelectric power plants, the data from the DEAMTM LCA database are used.Results and Discussion Selected environmental profiles of the US electricity system are presented in the paper version, while the on-line version presents the whole LCI data. The overall US electricity system in the year 2000 released about 2,654 Tg CO2 eq. of greenhouse gas emissions based on 100-year global warming potentials with 193 g CO2 eq. MJe–1 as an weighted average emission rate per one MJ electricity generated. Most greenhouse gases are released during combusting fossil fuels, accounting for 78–95% of the total. The greenhouse gas emissions released from coal-fired power plants account for 81% of the total greenhouse gas emissions associated with electricity generation, and natural gas-fired power plants contribute about 16% of the total. The most significant regions for the total greenhouse gas emissions are the SERC (Southeastern Electric Reliability Council) and ECAR (East Central Area Reliability Coordination Agreement) regions, which account for 22% and 21% of the total, respectively. A sensitivity analysis on the generation and consumption based calculations indicates that the environmental profiles of electricity based on consumption are more uncertain than those based on generation unless exchange data from the same year are available because the exchange rates (region to region import and export of electricity) vary significantly from year to year.Conclusions and Outlook Those who are interested in the LCI data of the US electricity system can refer to the on-line version. When the inventory data presented in the on-line version are used in a life cycle assessment study, the distribution and transmission losses should be taken into account, which is about 9.5% of the net generation [1]. The comprehensive technical information presented in this study can be used in estimating the environmental burdens when new information on the regional fuel mix or the upstream processes is available. The exchange rates presented in this study also offer useful information in consequential LCI studies.  相似文献   

8.
中国省级火电供应生命周期清单分析   总被引:2,自引:0,他引:2  
丁宁  杨建新  吕彬 《生态学报》2016,36(22):7192-7201
应用生命周期评价方法,建立了我国各省区的火电供应生命周期清单。清单分析结果表明,我国各省区单位火电供应的生命周期清单之间,及与全国单位火电供应的生命周期清单之间均存在一定差异,以总能源投入和全球变暖潜值为例进行了分析。在全球变暖潜值方面,我国单位火电供应的平均值为1.05kg/k Wh。云南等15个省区的单位火电全球变暖潜值与全国平均水平相差±10%以上。如果基于全国单位火电供应的平均全球变暖潜值计算各省火电总量全球变暖潜值,与基于各省单位火电全球变暖潜值计算的结果相比,也存在一定的差距。15个省区与基于全国平均值计算的结果相差±10%以上,表明了核算各省区火电清单的必要性。中国省级火电供应生命周期清单为省区级别的材料、产品、产业等生命周期评价提供数据支撑,也为各省区电力节能减排提供了理论基础。  相似文献   

9.
Background, aim, and scope  Beneficial use of coal combustion products (CCPs) in industrial or construction operations has the potential to minimize environmental and human health impacts that would otherwise be associated with disposal of CCPs in the life cycle of coal used for electricity generation. To assess opportunities for reducing impacts associated with four CCP materials considered in this study, fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) material, this paper reports results of expanding a life cycle inventory of raw material and emissions (part 1 of this series of papers) by performing life cycle impact assessment on five scenarios of CCP management. Materials and methods  SimaPro 5.1 software (PRé Consultants) was used to calculate comparative environmental impacts of all scenarios using CML2001 and Environmental Design of Industrial Products 1997 midpoint impact assessment methods and Heirarchist and Individualist levels of the Eco-indicator 99 end point method. Trends were compared for global and local environmental and human health impact categories of global warming, acidification, smog formation, human toxicity, and ecotoxicity. Results  In each impact category, beneficial use of fly ash, bottom ash, and FGD material resulted in a reduced impact compared to disposal of these materials. The extent to which beneficial use reduced impacts depended on several factors, including the impact category in consideration, the magnitude of potentially avoided impacts associated with producing raw materials that CCPs replace, and the potential impact of CCP disposal methods. Global warming impacts were reduced by the substitution of fly ash for Portland cement in concrete production, as production of Portland cement generates large quantities of CO2. However, for categories of global warming, smog formation, and acidification, impact reductions from CCP beneficial use are small, less than 6%, as these impacts were attributable, in greater part, to upstream processes of coal mining, transportation, and combustion. Human toxicity and ecotoxicity categories showed larger but more varied reductions, from 0% to 50%, caused by diverting CCPs from landfills and surface impoundments. Discussion  When comparing beneficial use scenarios, the four impact assessment methods used showed similar trends in categories of global warming, acidification, and smog formation. However, results diverged for human toxicity and ecotoxicity categories due to the lack of consensus among methods in classification and characterization of impacts from heavy metal release. Similarly, when assessing sensitivity of these results to changes in assumptions or system boundaries, human toxicity and ecotoxicity categories were most susceptible to change, while other impact categories had more robust results. Conclusions  Impact assessment results showed that beneficial use of CCPs presented opportunities for reduced environmental impacts in the life cycle of coal combusted for electricity generation, as compared to the baseline scenario of 100% CCP disposal, although the impact reductions varied depending on the CCPs used, the ultimate beneficial use, and the impact category in consideration. Recommendations and perspectives  As regulators and electric utilities increasingly consider viability and economics of the use of CCPs in various applications, this study provides a first-basis study of selected beneficial use alternatives. With these initial results, future studies should be directed towards beneficial uses that promise significant economic and environmental savings, such as use of fly ash in concrete, to quantify the currently unknown risk of these applications.  相似文献   

10.
The Clean Air Act in the United States identifies diesel‐powered motor vehicles, including transit buses, as significant sources of several criteria pollutants that contribute to ground‐level ozone formation or smog. The effects of air pollution in urban areas are often more significant due to congestion and can lead to respiratory and cardiovascular health impacts. Life cycle assessment (LCA) has been utilized in the literature to compare conventional gasoline‐powered passenger cars with various types of electric and hybrid‐powered alternatives, however, no similarly detailed studies exist for mass transit buses. LCA results from this study indicate that the use phase, consisting of diesel production/combustion for the conventional bus and electricity generation for the electric bus, dominates most impact categories; however, the effects of battery production are significant for global warming, carcinogens, ozone depletion, and eco‐toxicity. There is a clear connection between the mix of power‐generation technologies and the preference for the diesel or electric bus. With the existing U.S. average grid, there is a strong preference for the conventional diesel bus over the electric bus when considering global warming impacts alone. Policy makers must consider regional variations in the electricity grid prior to recommending the use of battery electric buses to reduce carbon dioxide (CO2) emissions. This study found that the electric bus was preferable in only eight states, including Washington and Oregon. Improvements in battery technology reduce the life cycle impacts from the electric bus, but the electricity grid makeup is the dominant variable.  相似文献   

11.
The objective of this study is to estimate the specific CO2 emissions related to the electricity consumption in the European primary aluminium production and to compare different choices of system boundaries of its electricity supply. The study covers all European aluminium smelters, except Russia and the Ukraine. The concepts of single power plant supply, contract mix, national mix and European grid mix are compared as alternative choices of system boundaries of the electricity supply. The calculations of the electricity consumption in the electrolysis are based on plant-specific information on technology, production and electricity supply. Detailed fuel and country-specific data on CO2 emissions of the relevant types of electricity generation are used with a ‘from cradle to grave’ perspective. The specific emissions calculated for Europe fall into the range of 6-7 kg CO2/kg Al depending on the choice of system boundaries.  相似文献   

12.
Life cycle assessment (LCA) was combined with primary data from nine forest harvesting operations in New York, Maine, Massachusetts, and Vermont, from 2013 to 2019 where forest biomass (FB) for bioenergy was one of several products. The objective was to conduct a data‐driven study of greenhouse gas emissions associated with FB feedstock harvesting operations in the Northeast United States. Deterministic and stochastic LCA models were built to simulate the current FB bioenergy feedstock supply chain in the Northeast US with a cradle‐to‐gate scope (forest harvest through roadside loading) and a functional unit of 1.0 Mg of green FB feedstock at a 50% moisture content. Baseline LCA, sensitivity analysis, and uncertainty analyses were conducted for three different FB feedstock types—dirty chips, clean chips, and grindings—enabling an empirically driven investigation of differences between feedstock types, individual harvesting process contributions, and literature comparisons. The baseline LCA average impacts were lower for grindings (4.57 kg CO2eq/Mg) and dirty chips (7.16 kg CO2eq/Mg) than for clean chips (23.99 kg CO2eq/Mg) under economic allocation, but impacts were of similar magnitude under mass allocation, ranging from 24.42 to 27.89 kg CO2eq/Mg. Uncertainty analysis showed a wider range of probable results under mass allocation compared to economic allocation. Sensitivity analysis revealed the impact of variations in the production masses and total economic values of primary products of forest harvests on the LCA results due to allocation of supply chain emissions. The high variability in fuel use between logging contractors also had a distinct influence on LCA results. The results of this study can aid decision‐makers in energy policy and guide emissions reductions efforts while informing future LCAs that expand the system boundary to regional FB energy pathways, including electricity generation, transportation fuels, pellets for heat, and combined heat and power.  相似文献   

13.
Energy harvesting from extremely low frequency magnetic fields using magneto‐mechano‐electric (MME) harvesters enables wireless power transfer for operating Internet of Things (IoT) devices. The MME harvesters are designed to resonate at a fixed frequency by absorbing AC magnetic fields through a composite cantilever comprising of piezoelectric and magnetostrictive materials, and a permanent magnetic tip mass. However, this harvester architecture limits power generation because volume of the magnetic end mass is closely coupled with the resonance frequency of the device structure. Here, a method is demonstrated for maintaining the resonance frequency of the MME harvesters under all operating conditions (e.g., 60 Hz, standard frequency of electricity in many countries) while simultaneously enhancing the output power generation. By distributing the magnetic mass over the beam, the output power of the harvester is significantly enhanced at a constant resonance frequency. The MME harvester with distributed forcing shows 280% improvement in the power generation compared with a traditional architecture. The generated power is shown to be sufficient to power eight different onboard sensors with wireless data transmission integrated on a drone. These results demonstrate the promise of MME energy harvesters for powering wireless communication and IoT sensors.  相似文献   

14.

Background

Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator).

Methodology/Principal Findings

We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester’s overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods.

Conclusions/Significance

These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.  相似文献   

15.
Quasi-solid thermogalvanic hydrogels hold great promise in harvesting low-grade thermal energy, yet, they are still far from practical application owing to relatively low power output. Herein, through liquid nitrogen quenching-induced structure engineering, a high-performance stretchable thermogalvanic hydrogel thread with a high specific output power density of 2227.5 µW m−2 K−2 and a large thermopower of 4.5 mV K−1 is designed. After liquid nitrogen quenching, both the thermopower and electrical conductivity have been greatly improved compared to natural cooling. The excellent properties are attributed to liquid nitrogen quenching-induced grain refinement and precipitation inhibition. It is a novel and general preparation method for high-performance and homogeneous thermogalvanic hydrogels. Finally, a thermogalvanic hydrogel array is demonstrated to be capable of driving a low-power motor and charging a mobile phone by low-grade thermal energy harvesting, indicating a great potential for practical applications in human daily life.  相似文献   

16.
Background, aim, and scope  The main primary energy for electricity in Thailand is natural gas, accounting for 73% of the grid mix. Electricity generation from natural gas combustion is associated with substantial air emissions. The two technologies currently used in Thailand, thermal and combined cycle power plant, have been evaluated for the potential environmental impacts in a “cradle-to-grid” study according to the life cycle assessment (LCA) method. This study evaluates the environmental impacts of each process of the natural gas power production over the entire life cycle and compares two different power plant technologies currently used in Thailand, namely, combined cycle and thermal. Materials and methods  LCA is used as a tool for the assessment of resource consumption and associated impacts generated from utilization of natural gas in power production. The details follow the methodology outlined in ISO 14040. The scope of this research includes natural gas extraction, natural gas separation, natural gas transmission, and natural gas power production. Most of the inventory data have been collected from Thailand, except for the upstream of fuel oil and fuel transmission, which have been computed from Greenhouse gases, Regulated Emissions, and Energy use in Transportation version 1.7 and Global Emission Model for Integrated Systems version 4.3. The impact categories considered are global warming, acidification, photochemical ozone formation, and nutrient enrichment potential (NEP). Results  The comparison reveals that the combined cycle power plant, which has a higher efficiency, performs better than the thermal power plant for global warming potential (GWP), acidification potential (ACP), and photochemical ozone formation potential (POCP), but not for NEP where the thermal power plant is preferable. Discussion  For the thermal power plant, the most significant environmental impacts are from power production followed by upstream of fuel oil, natural gas extraction, separation, and transportation. For the combined cycle power plant, the most significant environmental impacts are from power production followed by natural gas extraction, separation, and transportation. The significant difference between the two types of power production is mainly from the combustion process and feedstock in power plant. Conclusions  The thermal power plant uses a mix of natural gas (56% by energy content) and fuel oil (44% by energy content); whereas, the combined cycle power plant operates primarily on natural gas. The largest contribution to GWP, ACP, and NEP is from power production for both thermal as well as combined cycle power plants. The POCP for the thermal power plant is also from power production; whereas, for combined cycle power plant, it is mainly from transmission of natural gas. Recommendations and perspectives  In this research, we have examined the environmental impact of electricity generation technology between thermal and combined cycle natural gas power plants. This is the overview of the whole life cycle of natural gas power plant, which will help in decision making. The results of this study will be useful for future power plants as natural gas is the major feedstock being promoted in Thailand for power production. Also, these results will be used in further research for comparison with other feedstocks and power production technologies.  相似文献   

17.
Literature data for vehicle life cycle water consumption are limited and contradictory; there are no published estimates of vehicle life cycle water withdrawal. To place future discussions of sustainable mobility on a firmer technical basis, we report the results of a cradle‐to‐grave assessment of water withdrawal and water consumption for the gasoline internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) variants of the 2012 Ford Focus. U.S. average life cycle water withdrawal and consumption of 531 and 131 cubic meters (m3), respectively, for a lifetime driving distance of 160,000 miles are estimated for the Focus ICEV using E10 gasoline. Employing our upper bound of water use in oil refinery operations and corn and ethanol production increases the life cycle withdrawal and consumption to 1,570 and 761 m3, respectively. The U.S. average life cycle water withdrawal for the Focus BEV is 3,770 m3 (7 times that for the ICEV, reflecting the large volume of cooling water required during electricity generation), whereas the water consumption is 170 m3 (comparable to that for the ICEV). Vehicle use is the most significant phase of the life cycle with fuel production, accounting for 49% of water withdrawal and 82% of water consumption for the ICEV. For the BEV, fuel (electricity) production accounts for 92% of life cycle water withdrawal and 85% of consumption. The results highlight the importance of renewable and sustainable fuels and increased vehicle energy efficiency in providing sustainable mobility.  相似文献   

18.
To verify the hypothesis that cell redox status regulates the process of microspore embryogenesis (ME), reactive oxygen species (ROS) generation and the activity of enzymatic and non-enzymatic antioxidants were analyzed in eight doubled haploid lines of triticale with significant differences in embryogenic potential. The analyses were performed in anthers excised from freshly cut tillers (control) and from low temperature (LT) pre-treated tillers (3 weeks at 4 °C) in which ME has been initiated. Significant associations between ME effectiveness and the variables studied were found. In control cultures, high superoxide dismutase (SOD) activity appeared crucial for microspore viability. On the other hand, positive though non-linear correlation between ME effectiveness and H2O2 generation, and negative correlation with catalase (CAT) activity suggest that some threshold level of H2O2 is important for successful ME initiation. LT tillers pre-treatment significantly increased H2O2 accumulation, which had a negative effect on ME effectiveness. However, even high level of H2O2 did not endanger cell viability as long as the cells exhibited high activity of ROS-decomposing enzymes (SOD, CAT and POX). The ability to sustain antioxidative enzyme activity under cold stress in the dark was another important requirement for high effectiveness of ME, allowing for the generation of the signal initiating microspore reprogramming and simultaneously protecting the cells from the toxic effects of ROS production. The role of antioxidative enzymes cannot be replaced even by high activity of non-enzymatic antioxidants. In conclusion, genetically controlled but environmentally modified cell tolerance to oxidative stress seems to play an important role in triticale ME.  相似文献   

19.
Background, aim, and scope  The environmental burden of photovoltaic (PV) solar modules is currently largely determined by the cumulative input of fossil energy used for module production. However, with an increased focus on limiting the emission of CO2 coming from fossil fuels, it is expected that renewable resources, including photovoltaics, may well become more important in producing electricity. A comparison of the environmental impacts of PV modules in case their life cycle is based on the use of PV electricity in contrast to conventional electricity can elucidate potential environmental drawbacks in an early stage of development of a solar-based economy. The goal of this paper is to show for ten impact categories the environmental consequences of replacing fossil electricity with solar electricity into the life cycle of two types of PV modules. Materials and methods  Using life cycle assessment (LCA), we evaluated the environmental impacts of two types of PV modules: a thin-film GaInP/GaAs tandem module and a multicrystalline silicon (multi-Si) module. For each of the modules, the total amount of fossil electricity required in the life cycle of the module was substituted with electricity that is generated by a corresponding PV module. The environmental impacts of the modules on the midpoint level were compared with those of the same modules in case their life cycle is based on the use of conventional electricity. The environmental impacts were assessed for Western European circumstances with an annual solar irradiation of 1000 kWh/m2. For the GaInP/GaAs module, the environmental impacts of individual production steps were also analysed. Results  Environmental burdens decreased when PV electricity was applied in the life cycle of the two PV modules. The impact score reductions of the GaInP/GaAs module were up to a factor of 4.9 (global warming). The impact score reductions found for the multi-Si module were up to a factor of 2.5 (abiotic depletion and global warming). Reductions of the toxicity scores of both module types were smaller or negligible. This is caused by a decreased use of fossil fuels, on the one hand, and an increased consumption of materials for the production of the additional solar modules used for generating the required PV electricity on the other. Overall, the impact scores of the GaInP/GaAs module were reduced more than the corresponding scores of the multi-Si module. The contribution analysis of the GaInP/GaAs module production steps indicated that for global warming, the cell growth process is dominant for supply with conventional electricity, while for the solar scenario, the frame becomes dominant. Regarding freshwater aquatic ecotoxicity scores associated with the life cycle of the GaInP/GaAs module, the cell growth process is dominant for supply with conventional electricity, while the reactor system for the cell growth with the associated gas scrubbing system is dominant for the solar scenario. Discussion  There are uncertainties regarding the calculated environmental impact scores. This paper describes uncertainties associated with the used economic allocation method, and uncertainties because of missing life cycle inventory data. For the GaInP/GaAs module, it was found that the global warming impact scores range from −66% to +41%, and the freshwater aquatic ecotoxicity scores (for an infinite time horizon) range from −40% to +300% compared to the default estimates. For both impact categories, the choices associated with the allocation of gallium, with the electricity mix, with the conversion efficiency of the commercially produced GaInP/GaAs cells, and with the yield of the cell growth process are most influential. For freshwater aquatic ecotoxicity, the uncertainty concerning the lifetime of the reactor system for the GaInP/GaAs cell growth process and the gas scrubbing system is particularly relevant. Conclusions  Use of PV electricity instead of fossil electricity significantly reduces the environmental burdens of the GaInP/GaAs and the multi-Si module. The reductions of the toxicity scores, however, are smaller or negligible. Toxicity impacts of the GaInP/GaAs cells can be reduced by improvement of the yield of the cell growth process, a reduced energy demand in the cell growth process, reduction of the amount of stainless steel in the cell growth reactor system and the gas scrubbing system, and a longer lifetime of these systems. Recommendations and perspectives  Because the greenhouse gas emissions associated with the production of fossil-fuel-based electricity have an important share in global warming on a world-wide scale, switching to a more extensive use of solar power is helpful to comply with the present international legislation on the area of global warming reduction. As reductions in toxicity impact scores are smaller or negligible when fossil electricity is replaced by PV electricity, it is desirable to give specific attention to the processes which dominantly contribute to these impact categories. Furthermore, in this study, a shift in ranking of several environmental impacts of the modules has been found when PV electricity is used instead of fossil electricity. The results of a comparative LCA can thus be dependent of the electricity mix used in the life cycles of the assessed products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The environmental characterization of the charging infrastructure required to operate electric vehicles (EVs) is usually overlooked in the literature. Only rudimentary life cycle inventories of EV charging facilities are available. This lack of information is especially noticeable in environmental studies of the environmental performance of electric two‐wheelers (E2Ws), none of which have included an analysis of charging facilities, even though they constitute the most successful electric‐drive market in the world. This article focuses on characterizing the life cycle of the global warming potential (GWP) and primary energy demand (PED) of two conventional charging facility designs that are widely implemented for charging E2Ws in public spaces. The relative environmental relevance of charging facilities per kilowatt‐hour (kWh) supplied to E2Ws is determined by considering a range of use scenarios (variability in the service ratio) and the effect of upgrading the electricity mix to include more renewable energy sources. Savings of over 3 metric tons (tonnes) of carbon dioxide equivalent emissions and 56 equivalent gigajoules can be achieved by implementing an optimized charging facility design. The internalization of the relative environmental burden from the charging facility per kWh supplied to E2Ws can increase the GWP of E2Ws’ use phase from 1% to 20% and the PED from 1% to 13%. Although the article focuses on one particular case scenario, the research is intended to provide complementary criteria for further research on the life cycle management of electric mobility systems. Thus, a series of factors that can influence the environmental performance of EV charging networks at the macro scale are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号