首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two simple, rapid and sensitive methods, namely, fourth‐derivative synchronous spectrofluorimetry (method I) and HPLC with fluorescence detection (method II) were developed for the simultaneous analysis of a binary mixture of itopride HCl (ITP) and domperidone (DOM) without prior separation. The first method was based on measuring the fourth derivative of the synchronous fluorescence spectra of the two drugs at Δλ = 40 nm in methanol. The different experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully optimized. Chromatographic separation was performed in < 6.0 min using a RP C18 column (250 mm × 4.6 mm i.d., 5 µm particle size) with fluorescence detection at 344 nm after excitation at 285 nm. A mobile phase composed of a mixture of 0.02 M phosphate buffer with acetonitrile in a ratio of 55 : 45, pH 4.5, was used at a flow rate of 1 mL/min. Linearity ranges were found to be 0.1–2 µg/mL for ITP in both methods, whereas those for DOM were found to be 0.08–2 and 0.05–1.5 µg/mL in methods I and II, respectively. The proposed methods were successfully applied for the determination of the studied drugs in synthetic mixtures and laboratory‐prepared tablets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Bambuterol (BAM) and terbultaline (TER) are well known and effective bronchodilators. In this article highly sensitive, green and cost‐effective spectrofluorimetric methods are designed to determine low concentrations of such drugs. The proposed methods are based on an investigation of the native fluorescence properties of aqueous solutions of BAM at 298 nm after excitation at 263 nm and of TER at 313 nm after excitation at 275 nm. Under optimum conditions, the plots of the relative fluorescence intensity versus concentration were rectilinear over the range 0.1–1.2 μg/mL for BAM and 0.05–0.5 μg/mL for TER with a limit of quantitation of 0.067 μg/mL for BAM and 0.018 μg/mL for TER. The methods are simple and hence suitable for application to the quantification of BAM and TER in syrups and tablets without interference from common excipients. Furthermore, based on United States Pharmacopeia (USP) guidelines, the application was extended to determine the content uniformity of the cited drugs in low dose tablets. The developed methods were fully validated according to the guidelines of the International Conference on Harmonization (ICH).  相似文献   

3.
Two simple, economical, rapid, precise, and accurate methods for simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combined tablet dosage form have been developed. The first method is based on ratio spectra derivative spectrophotometry, and the second method is zero-crossing difference spectrophotometry. The amplitudes in the first derivative of the corresponding ratio spectra at 231.0 and 271.0 nm were selected to determine olmesartan medoxomil and hydrochlorothiazide, respectively. Measurements of absorbance were carried out at zero-crossing wavelengths 257.8 and 240.2 nm for olmesartan medoxomil and hydrochlorothiazide by zero-crossing difference spectrophotometric method. Beer’s law is obeyed in the concentration range of 08–24 μg/mL for olmesartan medoxomil (OLM) and 05–15 μg/mL for hydrochlorothiazide (HCT) by ratio spectra derivative and 05–30 μg/mL for OLM and HCT by zero-crossing difference spectrophotometric method. The results of the assay were found to be 100.46 ± 0.95 for OLM and 100.4 ± 0.27 for HCT by ratio spectra derivative and 99.06 ± 1.14 for OLM and 100.05 ± 0.90 for HCT by zero-crossing difference spectrophotometric method. These methods passes F test and t test. Both methods were validated statistically and by performing recovery study.  相似文献   

4.
Propofol and cisatracurium besylate have been simultaneously determined using a highly sensitive first derivative synchronous spectrofluorometric method. The method is based on measuring first derivative synchronous spectrofluorimetric amplitude at Δλ = 40 nm with a scanning rate of 600 nm/min. The different experimental parameters affecting the fluorescence intensity of the two drugs were carefully studied and optimized. The amplitude–concentration plots were rectilinear over the range 40.0–400.0 ng/mL and 20.0–280.0 ng/mL for propofol and cisatracurium, respectively with lower detection limits of 4.0 and 2.35 ng/mL and quantification limits of 12.1 and 7.1 ng/mL for propofol and cisatracurium, respectively. The proposed method was successfully applied for the determination of the two compounds in synthetic mixtures and in commercial ampoules. The high sensitivity attained using the proposed method allowed the simultaneous determination of both drugs in spiked plasma samples. The mean % recoveries in spiked human plasma (n = 3) were 96.53 ± 0.90 and 96.20 ± 1.64 for each of propofol and cisatracurium, respectively. The method was validated in compliance with International Council of Harmonization (ICH) Guidelines.  相似文献   

5.
The formation of metal chelates with various ligands may lead to the production of fluorescent chelates or enhance the fluorescence of the chelating agent. This paper describes two sensitive, selective and computer‐solved methods, namely, zero order (SF) and second‐derivative synchronous spectrofluorimetry (SDSFS) for nano‐quantitation of two carbapenems; meropenem (MP) and ertapenem (EP). The methods are based on the chelation of MP with Tb3+ and EP with Zr4+ in buffered organic medium at pH 4.0 to produce fluorescent chelates. In the zero order method, the relative synchronous fluorescence intensity is measured at 327.0 nm at Δλ = 70.0 and 100.0 nm for MP and EP, respectively. The second method utilizes a second‐derivative technique to enhance the method selectivity and emphasize a stability‐indicating approach. The peak amplitudes (2D) of the second‐derivative synchronous spectra were estimated to be 333.06 and 330.06 nm for MP and EP, respectively. The proposed synchronous spectrofluorimetric methods were validated according to the International Conference on Harmonization (ICH) guidelines and applied successfully for the analysis of MP and EP in pure forms, pharmaceutical vials and in synthetic mixtures with different degradants of both drugs. Under optimum conditions, the mole‐ratio method was applied and the co‐ordination ratios of MP–Tb3+ and EP–Zr4+chelates were found to be 1:1 and 1:3. The formation constants for the chelation complexes were evaluated using the Benesi–Hildebrand's equation; the free energy change (ΔG) was also calculated. The results indicated that EP–Zr4+ was more stable than the MP–Tb3+ chelate. Moreover, the developed methods were found to be selective and inexpensive for quantitative determination of both drugs in quality control laboratories at nano‐levels.  相似文献   

6.
A rapid, simple, accurate and highly sensitive spectrofluorimetric method was developed for the simultaneous analysis of nebivolol hydrochloride (NEB) and amlodipine besylate (AML). The method was based on measuring the synchronous fluorescence intensity of the drugs at Δλ = 40 nm in methanol. Various experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully studied and optimized. The calibration plots were rectilinear over concentration ranges of 0.05–1.5 µg/mL and 0.5–10 µg/mL for NEB and AML with limits of detection (LOD) of 0.010 and 0.051 µg/mL and limits of quantitation (LOQ) of 0.031 and 0.156, respectively. The peak amplitudes (2D) of the second derivative synchronous fluorimetry (SDSF) were estimated at 282 nm for NEB and at 393 nm for AML. Good linearity was obtained over the concentration ranges. The proposed method was successfully applied to the determination of the studied compounds in laboratory‐prepared mixtures, commercial single and laboratory‐prepared tablets. The results were in good agreement with those obtained using the comparison method. The mean percent recoveries were found to be 100.12 ± 0.77 and 99.91 ± 0.77 for NEB and AML, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, one of the potential degradation products of the novel antiviral drug simeprevir was isolated and characterized by means of infrared (IR) and mass spectrometry. Moreover, comparative molecular docking, ADMET (absorption, distribution, metabolism, excretion – toxicity) and insilico toxicity prediction studies were applied to evaluate the activity of simeprevir and its degradation product. Furthermore,a simple, accurate and selective second derivative synchronous spectrofluorimetric method was developed for the determination of simeprevir in the presence of its oxidative degradation product.The synchronous fluorescence spectra of both compounds were measured in ethanol at pH 2.0 usingΔλ of 140 nm and the peak amplitude of the second derivative spectra were measured at 442 nm. The method was rectilinear over the concentration range of 0.2 to 2.0 μg/ml and validated according to the ICH (International Conference on Harmonization) guidelines. Moreover, the method was statistically compared to the reverse‐phase high‐performance liquid chromatography (RP‐HPLC) method and good results were obtained.  相似文献   

8.
Ambroxol hydrochloride (AMX) and guaifenesin (GFN) are approved drugs utilized to treat coughs through their potent mucolytic and expectorant properties. Due to their massive, combined administration in many illnesses, there is a persistent need for their concurrent estimation in different pharmaceutical formulations. Two sensitive, environmentally friendly spectrofluorimetric methods were developed. AMX was determined using the first method (I) without interference from GFN. This method depends on the quenching of Erythrosine B (EB) native fluorescence at 552 nm after excitation at 527 nm due to the formation of a non-fluorescent AMX-EB ion-pair complex in Britton–Robinson buffer (BRB) solution pH (3.5). The concentration plot is linear over the 0.25–5.0 μg/mL range, with a mean percent found value of 99.74%. Method (II) depends on measuring the native fluorescence of aqueous GFN solution at two analytical wavelengths, either 300 or 600 nm, after excitation at 274 nm. Relative fluorescence intensity (RFI)–concentration plots are linear over the ranges of 0.02–0.5 and 0.1–2.0 μg/ml, with mean percent found at 99.96% and 99.91% at dual wavelengths, respectively. The proposed methods were successfully applied to assay both drugs in raw materials and different single and combined pharmaceutical formulations. These methods have been thoroughly validated following International Committee on Harmonisation (ICH) guidelines. National Environmental Methods Index, Analytical Eco-Scale, and Green Analytical Procedure Index were used to prove greenness, thereby enhancing their applicability. The proposed techniques provide straightforward, precise, and cost-effective solutions for routine formulation analysis in quality control laboratories.  相似文献   

9.
Synchronous spectrofluorimetry is utilized to carry out a rapid, sensitive and reliable method for determination of the binary mixture of metolazone (MTL) and losartan potassium (LSP). Under optimized experimental conditions, the synchronized fluorescence spectra of the two drugs were measured at Δλ = 80 nm in acidic methanolic solution and intensities were recorded at 260 nm for MTL and 335 nm for LSP. Linear correlation between fluorescence intensity and concentration were obtained through the ranges 0.02–0.2 μg/mL and 0.2–2.0 μg/mL for MTL and LSP, respectively. Limits of detection were 3.02 and 0.12 ng/mL, whereas limits of quantification were 9.16 and 0.35 ng/mL for MTL and LSP, respectively. The designated procedure was easily and successfully adopted to determine the two compounds in their single, as well as in co‐formulated, tablets and the results showed high precision and accuracy without any significant interference from common tablet excipients. A comparison of the obtained results with a published reference method was carried out and both showed good agreement with respect to accuracy and precision.  相似文献   

10.
A highly accurate, simple and sensitive spectrofluorimetric analytical method for dapagliflozin (DGF) quantitation was developed. The proposed method was successively applied to DGF analysis in both its pure and pharmaceutical dosage forms. This method was developed to investigate DGF stability in its degradation products, as laid out in International Council for Harmonisation (ICH) rules. Kinetics of alkaline degradation of DGF was also calculated. The half‐life time (t1/2) of the reaction was 75.32 min. An alkaline degradation pathway was described. The present study involved measurement of the second‐derivative synchronous fluorescence intensity of DGF at Δλ = 30 nm. Peak amplitude was measured at 322 nm. Linear range of the calibration curve was 0.1–1.0 μg ml?1. Lower detection and quantitation limits were 0.023 and 0.071 μg ml?1, respectively, and indicated good sensitivity of the proposed method. Mean per cent recovery was 99.78 ± 1.78%. The proposed analytical approach was successfully applied to DGF in the quality control laboratory and would be suitable as a stability‐indicating assay.  相似文献   

11.
One of the most common features of many different clinical conditions is pain; hence, there is a crucial need for eliminating or reducing it to a tolerable level to retrieve physical, psychological and social functioning. A first derivative synchronous spectrofluorimetry technique is proposed for the simultaneous determination of celecoxib and tramadol HCl, a recent coformulation authorized for treating acute pain in adults. The method includes using synchronous spectrofluorimetry at ∆λ = 80 nm where tramadol HCl was determined using first derivative technique at λ = 230.2 nm, while celecoxib was determined at λ = 288.24 nm. The proposed method was successfully applied to their co-formulated dosage forms in addition to spiked human plasma and validated in agreement with the guidelines of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). The linear ranges were found to be 0.50–5.0 and 0.15–0.50, the limits of detection to be 0.088 and 0.011 and the limits of quantification to be 0.266 and 0.032 μg/ml for celecoxib and tramadol, respectively. Statistical analysis revealed no significant difference when compared with previously reported methods as evidenced by the values of the variance ratio F-test and Student t-test. The proposed method was successfully applied to commercial dosage forms and spiked human samples. Moreover, the greenness of the proposed method was investigated based on the analytical eco-scale approach, with the results showing an excellent green scale with a score of 95.  相似文献   

12.
A new rapid and simple stability‐indicating spectrofluorimetric method has been developed for the determination of two irreversible tyrosine kinase inhibitors (TKIs), neratinib (NER) and pelitinib (PEL). The method is based upon measurement of the native fluorescence intensity of both drugs at λex 270 nm in aqueous borate buffer solutions (pH 10.5). The fluorescence intensity recorded at 545 nm (NER) and 465 nm (PEL) were rectilinear over the concentration range of 0.1–10 μg/mL for both drugs with a high correlation coefficient (r > 0.999). The proposed method provided low limits of detection and of quantitation of 0.07, 0.11 μg/mL (NER) and 0.02, 0.05 μg/mL (PEL), respectively. The method was successfully applied for the determination of NER and PEL in bulk powder. The proposed methods were fully validated as per the International Conference on Harmonisation (ICH) guidelines. The application of the method was extended to stability studies of both NER and PEL under different forced‐degradation conditions (acidic‐induced, base‐induced, oxidative, wet heat, and photolytic degradation). Moreover, the kinetics of the base‐induced and oxidative degradation of both drugs was investigated and the pseudo‐first‐order rate constants and half‐lives were estimated at different temperatures. Also, an Arrhenius plot was applied to predict the stability behaviour of the two drugs at room temperature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Aliskiren hemifumarate (ALS) and amlodipine besylate (AML) were simultaneously determined by two different spectrofluorimetric techniques. The first technique depends on direct measurement of the steady‐state fluorescence intensities of ALS and AML at 313 nm and 452 nm upon excitation at 290 and 375 nm, respectively, in a solvent composed of methanol and water (10: 90, v/v) . The second technique utilizes synchronous fluorimetric quantitative screening of the emission spectra of ALS and AML at 272 and 366 nm, respectively using Δλ of 97 nm. Effects of different solvents and surfactants on relative fluorescence intensity were studied. The method was validated according to ICH guidelines. Linearity, accuracy and precision were found to be satisfactory in both techniques over the concentration ranges of 1–15 and 0.4–4 µg/mL for ALS and AML, respectively. In the first technique, limit of detection and limit of quantification were estimated and found to be 0.256 and 0.776 µg/mL for ALS as well as 0.067 and 0.204 µg/mL for AML, respectively. Also, limit of detection and limit of quantification were calculated in the synchronous method and found to be 0.293 and 0.887 µg/mL for ALS as well as 0.034 and 0.103 µg/mL for AML, respectively. The methods were successfully applied for the determination of the two drugs in their co‐formulated tablets. The results were compared statistically with reference methods and no significant difference was found. The developed methods are rapid, sensitive, inexpensive and accurate for the quality control and routine analysis of the cited drugs in bulk and in pharmaceutical preparations without pre‐separation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The enantiomeric purity of escitalopram oxalate ESC and its “in‐process impurities,” namely, ESC‐N‐oxide, ESC‐citadiol, and R(?)‐enantiomer were studied in drug substance and products using high‐performance liquid chromatography (HPLC)‐UV (Method I), synchronous fluorescence spectroscopy (SFS) (Method IIA), and first derivative SFS (Method IIB). Method I describes as an isocratic HPLC‐UV for the direct resolution and determination of enantiomeric purity of ESC and its “in‐process impurities.” The proposed method involved the use of αl‐acid glycoprotein (AGP) chiral stationary phase. The regression plots revealed good linear relationships of concentration range of 0.25 to 100 and 0.25 to 10 μg mL?1 for ESC and its impurities. The limits of detection and quantifications for ESC were 0.075 and 0.235 μg mL?1, respectively. Method II involves the significant enhancement of the fluorescence intensities of ESC and its impurities through inclusion complexes formation with hydroxyl propyl‐β‐cyclodextrin as a chiral selector in Micliavain buffer. Method IIA describes SFS technique for assay of ESC at 225 nm in presence of its impurities: R(?)‐enantiomer, citadiol, and N‐oxide at ?λ of 100 nm. This method was extended to (Method IIB) to apply first derivative SFS for the simultaneous determination of ESC at 236 nm and its impurities: the R(?)‐enantiomer, citadiol, and N‐oxide at 308, 275, and 280 nm, respectively. Linearity ranges were found to be 0.01 to 1.0 μg mL?1 for ESC and its impurities with lower detection and quantification limits of 0.033/0.011 and 0.038/0.013 μg mL?1 for SFS and first derivative synchronous fluorescence spectra (FDSFS), respectively. The methods were used to investigate the enantiomeric purity of escitalopram.  相似文献   

15.
A spectrofluorimetric approach that is sensitive, simple, validated, and cost-effective has been proposed for the estimation of amlodipine (AML) and perindopril (PER) in their bulk powders, pharmaceutical formulations, and spiked human plasma. The recommended approach utilized the quantitative quenching effect of the two cited drugs on the fluorescence intensity of erythrosine B, as a result of complex binary reactions among each drug with erythrosine B at pH 3.5 (Teorell and Stenhagen buffer). The quenching of erythrosine B fluorescence was recorded at 554 nm after excitation at 527 nm. The calibration curve was detected in the range 0.25–3.0 μg ml−1, with a correlation coefficient of 0.9996 for AML, and 0.1–1.5 μg ml−1, with a correlation coefficient of 0.9996 for PER. The established spectrofluorimetric approach was validated for the estimation of the cited drugs with high sensitivity regarding International Council on Harmonization guidelines. Therefore, the established approach could be utilized for quality control of the cited drugs in their pharmaceutical formulations.  相似文献   

16.
To determine the biomarkers of exposure to xylene, urinary 2-, 3- and 4-methyl-hippuric acids, a new HPLC/DAD analytical method has been developed, which uses β-cyclodextrin as an additive for elution; its complexing abilities are exploited to achieve complete chromatographic separation of the three isomers. The mobile phase was a 3% aqueous solution of β-cyclodextrin, pH 3, and methanol, 80:20, in isocratic conditions, with a flow rate of 1 mL/min. To optimize quantitative analysis three wavelengths were employed for detection: λ = 198 nm, λ = 200 nm, and λ = 202 nm. SPE was applied for the extraction from urine samples of analytes. Validation parameters show recoveries always above 82%; LOD was set at 1 μg/mL with an LOQ of 3 μg/mL. The linear dynamic range (from 4 to 100 μg/mL) showed excellent correspondence. This method is rapid and inexpensive and can be applied to several samples simultaneously using a manifold for SPE extraction. The analytes were separated completely and could be fully quantified. The method was used for the analysis of urine samples from 54 workers exposed to xylene in hospital laboratories and showed a good applicability while allowing quantification even at low doses.  相似文献   

17.
A rapid, simple, and sensitive second‐derivative synchronous fluorimetric method has been developed and validated for the simultaneous analysis of a binary mixture of desloratadine (DSL) and montelukast sodium (MKT) in their co‐formulated tablets. The method is based on measurement of the synchronous fluorescence intensities of the two drugs in McIlvaine's buffer, pH 2.3, in the presence of carboxy methyl cellulose sodium (CMC) as a fluorescence enhancer at a constant wavelength difference (Δλ) of 160 nm. The presence of CMC enhanced the synchronous fluorescence intensity of DSL by 216% and that of MKT by 28%. A linear dependence of the concentration on the amplitude of the second derivative synchronous fluorescence spectra was achieved over the ranges of 0.10–2.00 and 0.20–2.00 µg/mL with limits of detection of 0.02 and 0.03, and limits of quantification of 0.05 and 0.10 µg/mL for DSL and MKT, respectively. The proposed method was successfully applied for the determination of the studied compounds in laboratory‐prepared mixtures and tablets. The results were in good agreement with those obtained with the comparison method. The high sensitivity attained by the proposed method allowed the determination of MKT in spiked human plasma with average % recovery of 100.11 ± 2.44 (n = 3). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Economic and enantioselective synchronous fluorescence spectroscopy and high‐performance thin‐layer chromatography methods have been developed and validated as per ICH guidelines for the separation of zopiclone enantiomers using L‐(+)‐tartaric acid as a chiral selector, followed by determination of the chiral‐switching eszopiclone. Synchronous fluorescence spectroscopy was successfully applied for chiral recognition of R & S enantiomers of zopiclone at  = 110 nm based on creating of diastereomeric complexes with 0.06M tartaric acid in an aqueous medium containing 0.2M disodium hydrogen orthophosphate. Synchronous fluorescence intensities of eszopiclone were recorded at 296 nm in concentration range 0.2‐ to 4‐μg/mL eszopiclone. High‐performance thin‐layer chromatography method depends on resolution of zopiclone enantiomers on achiral HPTLC silica‐gel plates using acetonitrile:methanol:water (8:2:0.25, v/v/v) containing L‐(+)‐tartaric acid as a chiral mobile‐phase additive followed by densitometric measurements at 304 nm in concentration range of 1 to 10 μg/band of eszopiclone. The effect of chiral‐selector concentration, pH, and temperature on the resolution have been studied and optimized for the proposed methods. The cited procedures were successfully applied to determine eszopiclone in commercial tablets of pure and racemic forms. Enantiomeric excess was evaluated using optical purity test and integrated peak area to describe the enantiomeric ratio. Thermodynamics of chromatographic separation, enthalpy, and entropy were evaluated using the Van't Hoff equation. The proposed methods were found to be selective for identification and determination of the eutomer in drug substances and products.  相似文献   

19.
The present research has established a quick and highly sensitive second-derivative synchronous fluorometric technique for the simultaneous quantification of a binary mixture of olmesartan medoxomil and rosuvastatin calcium. Simultaneously, the suggested approach was used to detect the synchronous fluorescence intensity of the cited drugs at Δ λ = 80 nm in ethanol to determine the concentrations of olmesartan medoxomil and rosuvastatin calcium at 265 and 240 nm, respectively. Various experimental conditions were tested, and each variable was analyzed and optimized. The calibration graphs were shown to be linear within ranges of 0.1–2.0 and 0.5–6.0 μg ml−1 for each drug concentration, respectively. The newly developed Green Solvents Selecting Tool (GSST) was utilized to assess the solvent's sustainability. Furthermore, the proposed method was found to be environmentally friendly after being evaluated with three different tools [the Green Analytical Procedure Index (GAPI), the Analytical Greenness Metric (AGREE), and the Analytical Eco-Scale with Eco-score equal to 95]. The whiteness qualities were also studied using the Red–Green–Blue (RGB12) model, which was recently designed and showed a high score equal to 92.9. The proposed method’s good findings, as well as its ongoing sustainability, simplicity, and economy, stimulate its application in QC laboratories.  相似文献   

20.
The heating of 7S globulin caused changes in the intensities, but hardly affected the positions of the peaks and troughs of the second derivative absorption spectra at wavelengths below 270 nm. On the other hand, above 271 nm, changes were reflected both in the intensities and in the positions of peaks and troughs. The difference-second derivative absorption spectra indicated that 60 and 70 percent, respectively, of phenylalanine and tyrosine residues buried in the native 7S globulin remained as the buried form even after heating.

A spectrofluorimetry and fluorescence-quenching study suggested that one residue of tryptophan in the 7S globulin tended to be transferred to the more hydrophobic interior on heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号