首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.  相似文献   

2.
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2–3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential ‘pre-replicative’ removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.  相似文献   

3.
Replication Protein A (RPA) is a single-stranded DNA binding protein that interacts with DNA repair proteins including Uracil DNA Glycosylase (UNG2). Here, I report DNA binding and activity assays using purified recombinant RPA and UNG2. Using synthetic DNA substrates, RPA was found to promote UNG2's interaction with ssDNA-dsDNA junctions regardless of the DNA strand polarity surrounding the junction. RPA stimulated UNG2's removal of uracil bases paired with adenine or guanine in DNA as much as 17-fold when the uracil was positioned 21 bps from ssDNA-dsDNA junctions, and the largest degree of UNG2 stimulation occurred when RPA was in molar excess compared to DNA. I found that RPA becomes sequestered on ssDNA regions surrounding junctions which promotes its spatial targeting of UNG2 near the junction. However, when RPA concentration exceeds free ssDNA, RPA promotes UNG2's activity without spatial constraints in dsDNA regions. These effects of RPA on UNG2 were found to be mediated primarily by interactions between RPA's winged-helix domain and UNG2's N-terminal domain, but when the winged-helix domain is unavailable, a secondary interaction between UNG2's N-terminal domain and RPA can occur. This work supports a widespread role for RPA in stimulating uracil base excision repair.  相似文献   

4.
5.
6.
Many APOBEC cytidine deaminase members are known to induce ‘off-target’ cytidine deaminations in 5′TC motifs in genomic DNA that contribute to cancer evolution. In this report, we characterized APOBEC1, which is a possible cancer related APOBEC since APOBEC1 mRNA is highly expressed in certain types of tumors, such as lung adenocarcinoma. We found a low level of APOBEC1-induced DNA damage, as measured by γH2AX foci, in genomic DNA of a lung cancer cell line that correlated to its inability to compete in vitro with replication protein A (RPA) for ssDNA. This suggests that RPA can act as a defense against off-target deamination for some APOBEC enzymes. Overall, the data support the model that the ability of an APOBEC to compete with RPA can better predict genomic damage than combined analysis of mRNA expression levels in tumors and analysis of mutation signatures.  相似文献   

7.
BACKGROUND: Editing deaminases have a pivotal role in cellular physiology. A notable member of this superfamily, APOBEC3G (A3G), restricts retroviruses, and Activation Induced Deaminase (AID) generates antibody diversity by localized deamination of cytosines in DNA. Unconstrained deaminase activity can cause genome-wide mutagenesis and cancer. The mechanisms that protect the genomic DNA from the undesired action of deaminases are unknown. Using the in vitro deamination assays and expression of A3G in yeast, we show that replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, severely inhibits the deamination activity and processivity of A3G. PRINCIPAL FINDINGS/METHODOLOGY: We found that mutations induced by A3G in the yeast genomic reporter are changes of a single nucleotide. This is unexpected because of the known property of A3G to catalyze multiple deaminations upon one substrate encounter event in vitro. The addition of recombinant RPA to the oligonucleotide deamination assay severely inhibited A3G activity. Additionally, we reveal the inverse correlation between RPA concentration and the number of deaminations induced by A3G in vitro on long ssDNA regions. This resembles the "hit and run" single base substitution events observed in yeast. SIGNIFICANCE: Our data suggest that RPA is a plausible antimutator factor limiting the activity and processivity of editing deaminases in the model yeast system. Because of the similar antagonism of yeast RPA and human RPA with A3G in vitro, we propose that RPA plays a role in the protection of the human genome cell from A3G and other deaminases when they are inadvertently diverged from their natural targets. We propose a model where RPA serves as one of the guardians of the genome that protects ssDNA from the destructive processive activity of deaminases by non-specific steric hindrance.  相似文献   

8.
Deamination of cytosine in DNA results in mutagenic U:G mispairs, whereas incorporation of dUMP leads to U:A pairs that may be genotoxic directly or indirectly. In both cases, uracil is mainly removed by a uracil-DNA glycosylase (UDG) that initiates the base excision repair pathway. The major UDGs are mitochondrial UNG1 and nuclear UNG2 encoded by the UNG-gene, and nuclear SMUG1. TDG and MBD4 remove uracil from special sequence contexts, but their roles remain poorly understood. UNG2 is cell cycle regulated and has a major role in post-replicative removal of incorporated uracils. UNG2 and SMUG1 are both important for prevention of mutations caused by cytosine deamination, and their functions are non-redundant. In addition, SMUG1 has a major role in removal of hydroxymethyl uracil from oxidized thymines. Furthermore, UNG-proteins and SMUG1 may have important functions in removal of oxidized cytosines, e.g. isodialuric acid, alloxan and 5-hydroxyuracil after exposure to ionizing radiation. UNG2 is also essential in the acquired immune response, including somatic hypermutation (SHM) required for antibody affinity maturation and class switch recombination (CSR) mediating new effector functions, e.g. from IgM to IgG. Upon antigen exposure B-lymphocytes express activation induced cytosine deaminase that generates U:G mispairs at the Ig locus. These result in GC to AT transition mutations upon DNA replication and apparently other mutations as well. Some of these may result from the generation of abasic sites and translesion bypass synthesis across such sites. SMUG1 can not complement UNG2 deficiency, probably because it works very inefficiently on single-stranded DNA and is down-regulated in B cells. In humans, UNG-deficiency results in the hyper IgM syndrome characterized by recurrent infections, lymphoid hyperplasia, extremely low IgG, IgA and IgE and elevated IgM. Ung(-/-) mice have a similar phenotype, but in addition display dysregulated cytokine production and develop B cell lymphomas late in life.  相似文献   

9.
The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity.  相似文献   

10.
11.
12.
13.
14.
Apolipoprotein B-editing complex catalytic subunit 1 (APOBEC1) is the catalytic component of an RNA-editing complex that deaminates C6666 --> U in apolipoprotein B RNA in gastrointestinal tissue, thereby generating a premature stop codon. Whereas RNA is the physiological substrate of APOBEC1, recent experiments have strongly indicated that, when expressed in bacteria, APOBEC1 and some of its homologues can deaminate cytosine in DNA. Indeed, genetic evidence demonstrates that the physiological function of activation-induced deaminase, a B lymphocyte-specific APOBEC1 homologue, is to perform targeted deamination of cytosine within the immunoglobulin locus, thereby triggering antibody gene diversification. However, biochemical evidence of in vitro DNA deamination by members of the APOBEC family is still needed. Here, we show that deamination of cytosine to uracil in DNA can be achieved in vitro using partially purified APOBEC1 from extracts of transformed Escherichia coli. Thus, APOBEC1 can deaminate cytosine in both RNA and DNA. Strikingly, its activity on DNA is specific for single-stranded DNA and exhibits dependence on local sequence context.  相似文献   

15.
Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mutations resulting from uracil in DNA are prevented by error-free base excision repair. However, in B-cells uracil in DNA is also a physiological intermediate in acquired immunity. Here, activation-induced cytosine deaminase (AID) introduces template uracils that give GC to AT transition mutations in the Ig locus after replication. When uracil-DNA glycosylase (UNG2) removes uracil, error-prone translesion synthesis over the abasic site causes other mutations in the Ig locus. Together, these processes are central to somatic hypermutation (SHM) that increases immunoglobulin diversity. AID and UNG2 are also essential for generation of strand breaks that initiate class switch recombination (CSR). Patients lacking UNG2 display a hyper-IgM syndrome with recurrent infections, increased IgM, strongly decreased IgG, IgA and IgE and skewed SHM. UNG2 is also involved in innate immune response against retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans.  相似文献   

16.
The single-stranded DNA (ssDNA) cytidine deaminase APOBEC3F (A3F) deaminates cytosine (C) to uracil (U) and is a known restriction factor of HIV-1. Its C-terminal catalytic domain (CD2) alone is capable of binding single-stranded nucleic acids and is important for deamination. However, little is known about how the CD2 interacts with ssDNA. Here we report a crystal structure of A3F-CD2 in complex with a 10-nucleotide ssDNA composed of poly-thymine, which reveals a novel positively charged nucleic acid binding site distal to the active center that plays a key role in substrate DNA binding and catalytic activity. Lysine and tyrosine residues within this binding site interact with the ssDNA, and mutating these residues dramatically impairs both ssDNA binding and catalytic activity. This binding site is not conserved in APOBEC3G (A3G), which may explain differences in ssDNA-binding characteristics between A3F-CD2 and A3G-CD2. In addition, we observed an alternative Zn-coordination conformation around the active center. These findings reveal the structural relationships between nucleic acid interactions and catalytic activity of A3F.  相似文献   

17.
Human APOBEC3G and several other APOBEC3 proteins have been shown to inhibit the replication of a variety of retrotransposons and retroviruses. All of these enzymes can deaminate cytosines within single-strand DNA, but the overall importance of this conserved activity in retroelement restriction has been questioned by reports of deaminase-independent mechanisms. Here, three distinct retroelements, a yeast retrotransposon, Ty1, a murine endogenous retrovirus, MusD, and a lentivirus, human immunodeficiency virus type 1 (HIV-1), were used to evaluate the relative contributions of deaminase-dependent and -independent mechanisms. Although human APOBEC3G can restrict the replication of all three of these retroelements, APOBEC3G lacking the catalytic glutamate (E259Q) was clearly defective. This phenotype was particularly clear in experiments with low levels of APOBEC3G expression. In contrast, purposeful overexpression of APOBEC3G-E259Q was able to cause modest to severe reductions in the replication of Ty1, MusD, and HIV-1(ΔVif). The importance of these observations was highlighted by data showing that CEM-SS T-cell lines expressing near-physiologic levels of APOBEC3G-E259Q failed to inhibit the replication of HIV-1(ΔVif), whereas similar levels of wild-type APOBEC3G fully suppressed virus infectivity. Despite the requirement for DNA deamination, uracil DNA glycosylase did not modulate APOBEC3G-dependent restriction of Ty1 or HIV-1(ΔVif), further supporting prior studies indicating that the major uracil excision repair system of cells is not involved. In conclusion, the absolute requirement for the catalytic glutamate of APOBEC3G in Ty1, MusD, and HIV-1 restriction strongly indicates that DNA cytosine deamination is an essential part of the mechanism.  相似文献   

18.
Mutations are typically perceived as random, independent events. We describe here nonrandom clustered mutations in yeast and in human cancers. Genome sequencing of yeast grown under chronic alkylation damage identified mutation clusters that extend up to 200 kb. A predominance of "strand-coordinated" changes of either cytosines or guanines in the same strand, mutation patterns, and genetic controls indicated that simultaneous mutations were generated by base alkylation in abnormally long single-strand DNA (ssDNA) formed at double-strand breaks (DSBs) and replication forks. Significantly, we found mutation clusters with analogous features in sequenced human cancers. Strand-coordinated clusters of mutated cytosines or guanines often resided near chromosome rearrangement breakpoints and were highly enriched with a motif targeted by APOBEC family cytosine-deaminases, which strongly prefer ssDNA. These data indicate that hypermutation via multiple simultaneous changes in randomly formed ssDNA is a general phenomenon that may be an important mechanism producing rapid genetic variation.  相似文献   

19.
Wyka IM  Dhar K  Binz SK  Wold MS 《Biochemistry》2003,42(44):12909-12918
Human replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), eukaryotic single-stranded DNA (ssDNA) binding protein required for DNA recombination, repair, and replication. The three subunits of human RPA are composed of six conserved DNA binding domains (DBDs). Deletion and mutational studies have identified a high-affinity DNA binding core in the central region of the 70 kDa subunit, composed of DBDs A and B. To define the roles of each DBD in DNA binding, monomeric and tandem DBD A and B domain chimeras were created and characterized. Individually, DBDs A and B have a very low intrinsic affinity for ssDNA. In contrast, tandem DBDs (AA, AB, BA, and BB) bind ssDNA with moderate to high affinity. The AA chimera had a much higher affinity for ssDNA than did the other tandem DBDs, demonstrating that DBD A has a higher intrinsic affinity for ssDNA than DBD B. The RPA-DNA interface is similar in both DBD A and DBD B. Mutational analysis was carried out to probe the relative contributions of the two domains to DNA binding. Mutation of polar residues in either core DBD resulted in a significant decrease in the affinity of the RPA complex for ssDNA. RPA complexes with pairs of mutated polar residues had lower affinities than those with single mutations. The decrease in affinity observed when polar mutations were combined suggests that multiple polar interactions contribute to the affinity of the RPA core for DNA. These results indicate that RPA-ssDNA interactions are the result of binding of multiple nonequivalent domains. Our data are consistent with a sequential binding model for RPA, in which DBD A is responsible for positioning and initial binding of the RPA complex while DBD A together with DBD B direct stable, high-affinity binding to ssDNA.  相似文献   

20.
Deamination of cytosine to uracil and 5-methylcytosine to thymine represents a major mutagenic threat particularly at high temperatures. In double-stranded DNA, these spontaneous hydrolytic reactions give rise to G.U and G.T mispairs, respectively, that must be restored to G.C pairs prior to the next round of DNA replication; if left unrepaired, 50% of progeny DNA would acquire G.C --> A.T transition mutations. The genome of the hyperthermophilic archaeon Pyrobaculum aerophilum has been recently shown to encode a protein, Pa-MIG, a member of the endonuclease III family, capable of processing both G.U and G.T mispairs. We now show that this latter activity is undetectable in crude extracts of P. aerophilum. However, uracil residues in G.U mispairs, in A.U pairs, and in single-stranded DNA were efficiently removed in these extracts. These activities were assigned to a approximately 22-kDa polypeptide named Pa-UDG (P. aerophilum uracil-DNA glycosylase). The recombinant Pa-UDG protein is highly thermostable and displays a considerable degree of homology to the recently described uracil-DNA glycosylases from Archaeoglobus fulgidus and Thermotoga maritima. Interestingly, neither Pa-MIG nor Pa-UDG was inhibited by UGI, a generic inhibitor of the UNG family of uracil glycosylases. Yet a small fraction of the total uracil processing activity present in crude extracts of P. aerophilum was inhibited by this peptide. This implies that the hyperthermophilic archaeon possesses at least a three-pronged defense against the mutagenic threat of hydrolytic deamination of cytosines in its genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号