首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lithium–sulfur batteries are susceptible to the loss of sulfur as dissolved polysulfides in the electrolyte and their ensuing redox shutting effect. The acceleration of the conversion kinetics of dissolved polysulfides into the insoluble sulfur and lithium sulfide via electrocatalysis has the appeal of being a root‐cause solution. MoS2 is the most common electrocatalyst used for this purpose. It is demonstrated that how the effectiveness can be improved by simultaneous cobalt and phosphorus doping of MoS2 nanotubes (P‐Mo0.9Co0.1S2‐2, containing 1.81 at% of P). Cobalt doping induces the transformation of MoS2 from 2H phase to metallic 1T phase, which improves the electrical conductivity of the MoS2. The Co–P coordinated sites on the catalyst surface are highly active for the polysulfide conversion reactions. Consequently, a sulfur cathode with P‐Mo0.9Co0.1S2‐2 can decrease the capacity fade rate from 0.28% per cycle before modification (over 150 cycles at 0.5C rate) to 0.046% per cycle after modification (over 600 cycles at 1C rate). P‐Mo0.9Co0.1S2‐2 also enhances the high rate performance from a capacity of 338 to 931 mAh g?1 at 6C rate. The results of this study provide the first direct evidence of the beneficial effects of heteroatom codoping of polysulfide conversion catalysts.  相似文献   

2.
The practical application of room temperature sodium–sulfur (RT Na–S) batteries are prevented by the sulfur insulation, the severe shuttling effect of high-order sodium polysulfides (Na2Sn, 4 ≤ n ≤ 8), and the sluggish reaction kinetics. Therefore, designing an ideal host material to suppress the polysulfides shuttle process and accelerate the redox reactions of soluble NaPSs to Na2S2/Na2S is of paramount importance for RT Na–S batteries. Here, a quasi-solid-state transformation of NaPSs is realized by building high efficiency MoC-W2C heterostructure in freestanding multichannel carbon nanofibers via electrospinning and calcination methods (MoC-W2C-MCNFs). The multichannel carbon nanofibers are interlinked micro-mesoporous structures that can accommodate volume change of electrode materials and confine the entire redox process of NaPSs (restraining the polysulfides shuttle process). Meanwhile, the MoC-W2C heterostructure with abundant heterointerfaces can facilitate electron/ion transport and accelerate conversion of NaPSs. Consequently, the S/MoC-W2C-MCNFs cathode delivers a high capacity of 640 mAh g−1 after 500 cycles at 0.2 A g−1 and an excellent reversible performance of 200 mAh g−1 after ultralong 3500 cycles at 4 A g−1. What's more, the heterostructure catalytic mechanism (a quasi-solid-state transformation) is proposed and confirmed in carbonate electrolyte by combining experimentally and theoretically.  相似文献   

3.
The sluggish kinetics of hydrogen oxidation reaction (HOR) is one of the critical challenges for anion exchange membrane fuel cells. Here, we report epitaxial growth of Ir nanoclusters (<2 nm) on a MoS2 surface (Ir/MoS2) and optimize the alkaline HOR activity via tailoring interfacial charge transfer between Ir clusters and MoS2. The electron transfer from MoS2 to Ir clusters can effectively prevent the oxidation of Ir clusters, which is not the case for carbon-supported Ir nanoclusters (Ir/C) synthesized using the same method. Moreover, the HOR performance of the Ir/MoS2 can be further optimized by tuning the hydrogen binding energy (HBE) via a precise annealing treatment. A substantial exchange current density of 1.28 mA cmECSA−2 is achieved in the alkaline medium, which is ∼10 times over that of Ir/C. The HOR mass-specific activity of Ir/MoS2 heterostructure is as high as 182 mA mgIr−1. The experimental results and density functional theory calculations reveal that the significant improved HOR activity is attributed to the decreased HBE, which highlights epitaxial growth is an effective way for boosting catalytic activity of heterostructured catalysts.  相似文献   

4.
Double‐shelled NiO‐NiCo2O4 heterostructure@carbon hollow nanocages as efficient sulfur hosts are synthesized to overcome the barriers of lithium–sulfur (Li–S) batteries simultaneously. The double‐shelled nanocages can prevent the diffusion of lithium polysulfides (LiPSs) effectively. NiO‐NiCo2O4 heterostructure is able to promote polysulfide conversion reactions. Furthermore, the thin carbon layer outside can improve the electrical conductivity during cycling. Besides, such unique double‐shelled hollow nanocage architecture can also accommodate the volumetric effect of sulfur upon cycling. As a result, the prepared S/NiO‐NiCo2O4@carbon (C) electrode exhibits good rate capacities and stable cycling life up to 500 cycles at 0.5 C with a very low capacity decay rate of only ≈0.059% per cycle.  相似文献   

5.
Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules (Fe2O3@N‐PC/Mn3O4‐S). When applied as a cathode for Li–S batteries, the as‐prepared Fe2O3@N‐PC/Mn3O4‐S can deliver capacities as high as 1122 mAh g?1 after 200 cycles at 0.5 C and 639 mAh g?1 after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm?2, the cathode can still maintain a high areal specific capacity of 5.08 mAh cm?2 with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen‐vacancy‐induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts.  相似文献   

6.
Both the energy density and cycle stability are still challenges for lithium–sulfur (Li–S) batteries in future practical applications. Usually, light‐weight and nonpolar carbon materials are used as the hosts of sulfur, however they struggle on the cycle stability and undermine the volumetric energy density of Li–S batteries. Here, heavy NiCo2O4 nanofibers as carbon‐free sulfur immobilizers are introduced to fabricate sulfur‐based composites. NiCo2O4 can accelerate the catalytic conversion kinetics of soluble intermediate polysulfides by strong chemical interaction, leading to a good cycle stability of sulfur cathodes. Specifically, the S/NiCo2O4 composite presents a high gravimetric capacity of 1125 mAh g?1 at 0.1 C rate with the composite as active material, and a low fading rate of 0.039% per cycle over 1500 cycles at 1 C rate. In particular, the S/NiCo2O4 composite with the high tap density of 1.66 g cm?3 delivers large volumetric capacity of 1867 mAh cm?3, almost twice that of the conventional S/carbon composites.  相似文献   

7.
Bromine-based flow batteries (Br-FBs) are highly competitive for stationary energy storage due to their high energy density and cost-effectiveness. However, adding bromine complexing agents (BCAs) to electrolytes slows down Br2/Br reaction kinetics, causing higher polarization and lower power density of Br-FBs. Herein, in situ vertically aligned MoS2 nanosheet arrays on traditional carbon felt substrates as electrodes to construct high power–density BCA-free Br-FBs are proposed. MoS2 arrays exhibit strong adsorption capacity to bromine, which helps the electrodes capture and retain bromine species. Even without BCAs, the battery self-discharge caused by bromine diffusion is also inhibited. Moreover, the rate-determining step of Br2/Br reactions is boosted and the vertically aligned array structure provides sufficient sites, motivating Br2/Br reaction kinetics and decreasing the battery polarization. The capacity retention rate of the BCA-free Br-FB based on MoS2 arrays-based electrodes reaches 46.34% after the 24-h standing test at 80 mA cm−2, meeting the requirements of practical applications. Most importantly, this BCA-free Br-FB exhibits a high Coulombic efficiency of 97.00% and an ultralong cycle life of 1000 cycles at a high current density of 200 mA cm−2. This work provides an available approach to developing advanced electrode materials for high power–density and long-lifespan Br-FBs.  相似文献   

8.
Severe polysulfide dissolution and shuttling are the main challenges that plague the long cycle life and capacity retention of lithium-sulfur (Li-S) batteries. To address these challenges, efficient separators are designed and modified with a dual functional bimetallic metal-organic framework (MOF). Flower-shaped bimetallic MOFs (i.e., Fe-ZIF-8) with nanostructured pores are synthesized at 35 °C in water by introducing dopant metal sites (Fe), which are then coated on a polypropylene (PP) separator to provide selective channels, thereby effectively inhibiting the migration of lithium polysulfides while allowing homogeneous transport of Li-ions. The active sites of the Fe-ZIF-8 enable electrocatalytic conversion, facilitating the conversion of lithium polysulfides. Moreover, the developed separator can prevent dendrite formation due to the uniform pore size and hence the even Li-ion transport and deposition. A coin cell using a Fe-ZIF-8/PP separator with S-loaded carbon cathode displayed a high cycle life of 1000 cycles with a high initial discharge capacity of 863 mAh g−1 at 0.5 C and a discharge capacity of 746 mAh g−1 at a high rate of 3 C. Promising specific capacity has been documented even under high sulfur loading of 5.0 mg cm−2 and electrolyte to the sulfur ratio (E/S) of 5 µL mg−1.  相似文献   

9.
Introducing strain is considered an effective strategy to enhance the catalytic activity of host material in lithium-sulfur batteries (LSB). However, the introduction of strain through chemical methods often inevitably leads to changes in chemical composition and phase structure, making it difficult to truly reveal the essence and root cause of catalytic activity enhancement. In this paper, strain into MoS2 is introduced through a simple heat treatment and quenching. Experimental research and theoretical analysis show that the strain raises parts of antibonding orbitals in Mo─S bonds above the Fermi level and weakens Li─S and S─S bonds, resulting in tight anchoring and accelerating the conversion for lithium polysulfides (LiPSs). The cells based on the MoS2 with high strain delivers an initial discharge specific capacity as high as 1265 mAh g−1 under 0.2 C and a low average capacity fading of 0.041% per cycle during 1500 cycles under 1 C. This research work deeply reveals the origin of strain effects in the reaction process of LSB, providing important design principles and references for the rational design of high-performance catalytic materials in the future.  相似文献   

10.
The rapid growth of lithium dendrites has seriously hindered the development and practical application of high-energy-density all-solid-state lithium metal batteries (ASSLMBs). Herein, a soft carbon (SC)-nano Li6.4La3Zr1.4Ta0.6O12 (LLZTO) (with high ionic conductivity and diffusion coefficient) mixed ionic and electronic conducting interface layer is designed to promote the rapid migration of Li+ at the interfacial layer, induce the uniform deposition of lithium metal on nanoscale (nano) LLZTO ion-conducting network inside the interface layer, effectively suppress the growth of lithium dendrites, and significantly improve the electrochemical performance of ASSLMBs. LiZrO2@LiCoO2(LZO@LCO)/Li6PS5Cl(LPSCl)-nano LLZTO/Li ASSLMB achieves high current density (12.5 mA cm−2), ultra-high areal capacity (15 mAh cm−2, corresponding to LZO@LCO mass loadings of 111.11 mg cm−2), and ultra-long cycle life (20 000 cycles). Therefore, the introduction of SC-nano LLZTO mixed conducting interface layer can greatly improve the interfacial stability between solid-state electrolyte (SSE) and lithium metal anode to enable dendrite-free ASSLMBs.  相似文献   

11.
Due to integrated advantages in electrochemical functionalities for energy conversion, 2D nonlayered heterostructure nanosheets offer new and fascinating opportunities for electrocatalysis but their fabrication is challenging when compared with the widely studied 2D layered heterostructure. Herein, a bottom‐up approach is established for facile synthesis of holey 2D transition metal carbide/nitride heterostructure nanosheets (h‐TMCN) with regulated hole sizes by controlled thermal annealing of the Mo/Zn bimetallic imidazolate frameworks (Mo/Zn BIFs). Ex situ phase and structural identifications disclose that the Mo/Zn BIFs precursor experiences interconnected three steps of transformation to produce h‐TMCN. Especially, the slow successive solid‐state diffusion of nitrogen and carbon into immediate noncrystalline molybdenum oxides allows the intergrowth of Mo2C and Mo2N into the 2D nonlayered heterostructure. X‐ray fine structure analysis coupled with high resolution X‐ray photoelectron spectroscopy demonstrate that Mo2C and Mo2N in the microdomains can chemically bond with each other, producing the abundant active N–Mo–C interfaces toward water splitting. Consequently, h‐TMCN affords low overpotentials, high turnover frequencies, rapid charge transfer, and superior long‐term stability toward electrocatalytic water oxidation. The present work demonstrates the feasibility of developing a broad range of 2D nonlayered heterostructures for high efficiency chemical energy conversion.  相似文献   

12.
The lithium–sulfur (Li–S) battery is a next generation high energy density battery, but its practical application is hindered by the poor cycling stability derived from the severe shuttling of lithium polysulfides (LiPSs). Catalysis is a promising way to solve this problem, but the rational design of relevant catalysts is still hard to achieve. This paper reports the WS2–WO3 heterostructures prepared by in situ sulfurization of WO3, and by controlling the sulfurization degree, the structure is controlled, which balances the trapping ability (by WO3) and catalytic activity (by WS2) toward LiPSs. As a result, the WS2–WO3 heterostructures effectively accelerate LiPS conversion and improve sulfur utilization. The Li–S battery with 5 wt% WS2–WO3 heterostructures as additives in the cathode shows an excellent rate performance and good cycling stability, revealing a 0.06% capacity decay each cycle over 500 cycles at 0.5 C. By building an interlayer with such heterostructure‐added graphenes, the battery with a high sulfur loading of 5 mg cm?2 still shows a high capacity retention of 86.1% after 300 cycles at 0.5 C. This work provides a rational way to prepare the metal oxide–sulfide heterostructures with an optimized structure to enhance the performance of Li–S batteries.  相似文献   

13.
《IRBM》2008,29(2-3):192-201
In this report, we describe a novel strategy for the design of a clinical urea biosensor using a process based on assembled multilayer systems. Biotinylated enzyme (urease–subiotin) was immobilized on the biotinylated polypyrrole coated Chemical field effect capacitance (ChemFEC) devices using the high avidin–biotin affinity. The immobilized enzyme activity was checked by its catalytic conversion of urea into carbon dioxide and ammonia. Electrochemical response of the bridge system constructed on Si/SiO2/Si3N4 electrodes to urea addition was evaluated using the capacity–potential measurements. In addition, contact-angle measurements were carried out to control the change of surface energy and their components before and after each layer formation. The developed urea biosensor demonstrates high performances: a good sensitivity of 50 mV/pUrea in the linear urea concentration range from 10−4 to 10−1 M and an excellent operational stability after three weeks of continuous use. The immobilized urease was characterised through its apparent Michaelis–Menten constant (5 mM) and the activation energy of the enzymatic reaction (20 kJ mol−1). It was also shown that capacitive measurements can be used to quantify the interaction between molecular systems, based on avidin and biotin molecules.  相似文献   

14.
The detrimental shuttle effect in lithium–sulfur batteries mainly results from the mobility of soluble polysulfide intermediates and their sluggish conversion kinetics. Herein, presented is a multifunctional catalyst with the merits of strong polysulfides adsorption ability, superior polysulfides conversion activity, high specific surface area, and electron conductivity by in situ crafting of the TiO2‐MXene (Ti3C2Tx) heterostructures. The uniformly distributed TiO2 on MXene sheets act as capturing centers to immobilize polysulfides, the hetero‐interface ensures rapid diffusion of anchored polysulfides from TiO2 to MXene, and the oxygen‐terminated MXene surface is endowed with high catalytic activity toward polysulfide conversion. The improved lithium–sulfur batteries deliver 800 mAh g?1 at 2 C and an ultralow capacity decay of 0.028% per cycle over 1000 cycles at 2 C. Even with a high sulfur loading of 5.1 mg cm?2, the capacity retention of 93% after 200 cycles is still maintained. This work sheds new insights into the design of high‐performance catalysts with manipulated chemical components and tailored surface chemistry to regulate polysulfides in Li–S batteries.  相似文献   

15.
The responses of soil-atmosphere carbon (C) exchange fluxes to growing atmospheric nitrogen (N) deposition are controversial, leading to large uncertainty in the estimated C sink of global forest ecosystems experiencing substantial N inputs. However, it is challenging to quantify critical load of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha−1 yr−1) were conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0–10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0–10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥60 kg N ha−1 yr−1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha−1 yr−1 significantly stimulated, whereas high rate of N addition (140 kg N ha−1 yr−1) significantly inhibited soil CO2 emission and CH4 uptake. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical level of N in terms of soil C fluxes should be considered in the ecological process models and ecosystem management.  相似文献   

16.
Lithium–sulfur battery (LSB) possesses high theoretical energy density, but its poor cycling stability and safety issues significantly restrict progress in practical applications. Herein, a low-cost and simple Al(OH)3-based modification of commercial separator, which renders the battery outstanding fire-retardant and stable cycling, is reported. The modification is carried out by a simple blade coating of an ultrathin composite layer, mainly consisting of Al(OH)3 nanoparticles and conductive carbon, on the cathode side of the separator. The Al(OH)3 shows strong chemical absorption ability toward Lewis-based polysulfides and outstanding fire retardance through a self-decomposition mechanism under high heat, while the conductive carbon material acts as a top current collector to prevent dead polysulfide. LSB using the Al(OH)3-modified separator shows an extremely low average capacity decade per cycle during 1000 cycles at 2 C (0.029%, 1 C = 1600 mA g−1). The pouch cell exhibiting high energy density (426 Wh kg−1) can also steadily cycle for more than 100 cycles with high capacity retention (70.2% at 0.1 C). The effectiveness and accessibility of this Al(OH)3 modification strategy will hasten the practical application progress of LSBs.  相似文献   

17.
As the lightest member of transition metal dichalcogenides, 2D titanium disulfide (2D TiS2) nanosheets are attractive for energy storage and conversion. However, reliable and controllable synthesis of single‐ to few‐layered TiS2 nanosheets is challenging due to the strong tendency of stacking and oxidation of ultrathin TiS2 nanosheets. This study reports for the first time the successful conversion of Ti3C2Tx MXene to sandwich‐like ultrathin TiS2 nanosheets confined by N, S co‐doped porous carbon (TiS2@NSC) via an in situ polydopamine‐assisted sulfuration process. When used as a sulfur host in lithium–sulfur batteries, TiS2@NSC shows both high trapping capability for lithium polysulfides (LiPSs), and remarkable electrocatalytic activity for LiPSs reduction and lithium sulfide oxidation. A freestanding sulfur cathode integrating TiS2@NSC with cotton‐derived carbon fibers delivers a high areal capacity of 5.9 mAh cm?2 after 100 cycles at 0.1 C with a low electrolyte/sulfur ratio and a high sulfur loading of 7.7 mg cm?2, placing TiS2@NSC one of the best LiPSs adsorbents and sulfur conversion catalysts reported to date. The developed nanospace‐confined strategy will shed light on the rational design and structural engineering of metal sulfides based nanoarchitectures for diverse applications.  相似文献   

18.
The toxic HAB dinoflagellate Karenia brevis (Davis) G. Hansen & Ø. Moestrup (formerly Gymnodinium breve) exhibits a migratory pattern atypical of dinoflagellates: cells concentrate in a narrow (∼0–5 cm) band at the water surface during daylight hours due to phototactic and negative geotactic responses, then disperse downward at night via non-tactic, random swimming. The hypothesis that this daylight surface aggregation behavior significantly influences bacterial and algal productivity and nutrient cycling within blooms was tested during a large, high biomass (chlorophyll a >19 μg L−1) K. brevis bloom in October of 2001 by examining the effects of this surface layer aggregation on inorganic and organic nutrient concentrations, cellular nitrogen uptake, primary and bacterial productivity and the stable isotopic signature (δ15N, δ13C) of particulate material. During daylight hours, concentrations of K. brevis and chlorophyll a in the 0–5 cm surface layer were enhanced by 131% (±241%) and 32.1% (±86.1%) respectively compared with an integrated water sample collection over a 0–1 m depth. Inorganic (NH4, NO3+2, PO4, SiO4) and organic (DOP, DON) nutrient concentrations were also elevated within the surface layer as was both bacterial and primary productivity. Uptake of nitrogen (NH4+, NO3, urea, dissolved primary amines, glutamine and alanine) compounds by K. brevis was greatest in the surface layer for all compounds tested, with the greatest enhancement evident in urea uptake rates, from 0.08 × 10−5 ng N K. brevis cell−1 h−1 to 3.1 × 10−5 ng N K. brevis cell−1 h−1. These data suggests that this surface aggregation layer is not only an area of concentrated cells within K. brevis blooms, but also an area of increased biological activity and nutrient cycling, especially of nitrogen. Additionally, the classic dinoflagellate migration paradigm of a downward migration for access to elevated NO3 concentrations during the dark period may not apply to certain dinoflagellates such as K. brevis in oligotrophic nearshore areas with no significant nitricline. For these dinoflagellates, concentration within a narrow surface layer in blooms during daylight hours may enhance nutrient supply through biological cycling and photochemical nutrient regeneration.  相似文献   

19.
Rechargeable lithium–sulfur batteries have attracted tremendous scientific attention owing to their superior energy density. However, the sulfur electrochemistry involves multielectron redox reactions and complicated phase transformations, while the final morphology of solid‐phase Li2S precipitates largely dominate the battery's performance. Herein, a triple‐phase interface among electrolyte/CoSe2/G is proposed to afford strong chemisorption, high electrical conductivity, and superb electrocatalysis of polysulfide redox reactions in a working lithium–sulfur battery. The triple‐phase interface effectively enhances the kinetic behaviors of soluble lithium polysulfides and regulates the uniform nucleation and controllable growth of solid Li2S precipitates at large current density. Therefore, the cell with the CoSe2/G functional separator delivers an ultrahigh rate cycle at 6.0 C with an initial capacity of 916 mAh g?1 and a capacity retention of 459 mAh g?1 after 500 cycles, and a stable operation of high sulfur loading electrode (2.69–4.35 mg cm?2). This work opens up a new insight into the energy chemistry at interfaces to rationally regulate the electrochemical redox reactions, and also inspires the exploration of related energy storage and conversion systems based on multielectron redox reactions.  相似文献   

20.
The high overpotential caused by the slow kinetics of oxygen reduction (ORR) and oxygen evolution (OER) has greatly limited the practical application of lithium-oxygen (Li−O2) batteries. The adoption of force-field-assisted system based on a newly developed piezocatalysis is promising in reducing the overpotential. Herein, a force-assisted Li−O2 battery is first established by employing MoS2/Pd nanocomposite cathode, in which the piezoelectric polarization as well as built-in electric field are formed in MoS2 piezoelectric catalyst under ultrasound activation, leading to the continuously separated electrons and holes to enhance the ORR and OER kinetics. Moreover, the introduction of Pd can promote the electrons transfer and further inhibit the complexation of electron–hole pairs, contributing to enhanced catalytic activity in the decomposition/generation of discharge products, resulting in reduced discharge/charge overpotentials. Thus, the force-assisted MoS2/Pd-based Li−O2 battery is capable of adjusting the output and input energies by the assisted ultrasonic wave. An ultra-low charging platform of 2.86 V and a high discharging platform of 2.77 V are achieved. The proposed unique force-assisted strategy can also be applied to lithium carbon dioxide battery system through the effective reduction and separation of CO2 and CO32−, providing significant insights in achieving efficient energy conversion for metal−air batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号