共查询到20条相似文献,搜索用时 15 毫秒
1.
Most existing phase II clinical trial designs focus on conventional chemotherapy with binary tumor response as the endpoint. The advent of novel therapies, such as molecularly targeted agents and immunotherapy, has made the endpoint of phase II trials more complicated, often involving ordinal, nested, and coprimary endpoints. We propose a simple and flexible Bayesian optimal phase II predictive probability (OPP) design that handles binary and complex endpoints in a unified way. The Dirichlet-multinomial model is employed to accommodate different types of endpoints. At each interim, given the observed interim data, we calculate the Bayesian predictive probability of success, should the trial continue to the maximum planned sample size, and use it to make the go/no-go decision. The OPP design controls the type I error rate, maximizes power or minimizes the expected sample size, and is easy to implement, because the go/no-go decision boundaries can be enumerated and included in the protocol before the onset of the trial. Simulation studies show that the OPP design has satisfactory operating characteristics. 相似文献
2.
Pediatric phase I trials are usually carried out after the adult trial testing the same agent has started, but not completed yet. As the pediatric trial progresses, in light of the accrued interim data from the concurrent adult trial, the pediatric protocol often is amended to modify the original pediatric dose escalation design. In practice, this is done frequently in an ad hoc way, interrupting patient accrual and slowing down the trial. We developed a pediatric-continuous reassessment method (PA-CRM) to streamline this process, providing a more efficient and rigorous method to find the maximum tolerated dose for pediatric phase I oncology trials. We use a discounted joint likelihood of the adult and pediatric data, with a discount parameter controlling information borrowing between pediatric and adult trials. According to the interim adult and pediatric data, the discount parameter is adaptively updated using the Bayesian model averaging method. Numerical study shows that the PA-CRM improves the efficiency and accuracy of the pediatric trial and is robust to various model assumptions. 相似文献
3.
In the era of targeted therapies and immunotherapies, the traditional drug development paradigm of testing one drug at a time in one indication has become increasingly inefficient. Motivated by a real-world application, we propose a master-protocol–based Bayesian platform trial design with mixed endpoints (PDME) to simultaneously evaluate multiple drugs in multiple indications, where different subsets of efficacy measures (eg, objective response and landmark progression-free survival) may be used by different indications as single or multiple endpoints. We propose a Bayesian hierarchical model to accommodate mixed endpoints and reflect the trial structure of indications that are nested within treatments. We develop a two-stage approach that first clusters the indications into homogeneous subgroups and then applies the Bayesian hierarchical model to each subgroup to achieve precision information borrowing. Patients are enrolled in a group-sequential way and adaptively assigned to treatments according to their efficacy estimates. At each interim analysis, the posterior probabilities that the treatment effect exceeds prespecified clinically relevant thresholds are used to drop ineffective treatments and “graduate” effective treatments. Simulations show that the PDME design has desirable operating characteristics compared to existing method. 相似文献
4.
The evaluation of surrogate endpoints for primary use in future clinical trials is an increasingly important research area, due to demands for more efficient trials coupled with recent regulatory acceptance of some surrogates as 'valid.' However, little consideration has been given to how a trial that utilizes a newly validated surrogate endpoint as its primary endpoint might be appropriately designed. We propose a novel Bayesian adaptive trial design that allows the new surrogate endpoint to play a dominant role in assessing the effect of an intervention, while remaining realistically cautious about its use. By incorporating multitrial historical information on the validated relationship between the surrogate and clinical endpoints, then subsequently evaluating accumulating data against this relationship as the new trial progresses, we adaptively guard against an erroneous assessment of treatment based upon a truly invalid surrogate. When the joint outcomes in the new trial seem plausible given similar historical trials, we proceed with the surrogate endpoint as the primary endpoint, and do so adaptively-perhaps stopping the trial for early success or inferiority of the experimental treatment, or for futility. Otherwise, we discard the surrogate and switch adaptive determinations to the original primary endpoint. We use simulation to test the operating characteristics of this new design compared to a standard O'Brien-Fleming approach, as well as the ability of our design to discriminate trustworthy from untrustworthy surrogates in hypothetical future trials. Furthermore, we investigate possible benefits using patient-level data from 18 adjuvant therapy trials in colon cancer, where disease-free survival is considered a newly validated surrogate endpoint for overall survival. 相似文献
5.
Yanxun Xu Peter Müller Apostolia M. Tsimberidou Donald Berry 《Biometrical journal. Biometrische Zeitschrift》2019,61(5):1160-1174
Targeted therapies on the basis of genomic aberrations analysis of the tumor have shown promising results in cancer prognosis and treatment. Regardless of tumor type, trials that match patients to targeted therapies for their particular genomic aberrations have become a mainstream direction of therapeutic management of patients with cancer. Therefore, finding the subpopulation of patients who can most benefit from an aberration‐specific targeted therapy across multiple cancer types is important. We propose an adaptive Bayesian clinical trial design for patient allocation and subpopulation identification. We start with a decision theoretic approach, including a utility function and a probability model across all possible subpopulation models. The main features of the proposed design and population finding methods are the use of a flexible nonparametric Bayesian survival regression based on a random covariate‐dependent partition of patients, and decisions based on a flexible utility function that reflects the requirement of the clinicians appropriately and realistically, and the adaptive allocation of patients to their superior treatments. Through extensive simulation studies, the new method is demonstrated to achieve desirable operating characteristics and compares favorably against the alternatives. 相似文献
6.
7.
Huiling Li Jianming Wang Xiaolong Luo Janis Grechko Christopher Jennison 《Biometrical journal. Biometrische Zeitschrift》2018,60(5):893-902
In two‐stage group sequential trials with a primary and a secondary endpoint, the overall type I error rate for the primary endpoint is often controlled by an α‐level boundary, such as an O'Brien‐Fleming or Pocock boundary. Following a hierarchical testing sequence, the secondary endpoint is tested only if the primary endpoint achieves statistical significance either at an interim analysis or at the final analysis. To control the type I error rate for the secondary endpoint, this is tested using a Bonferroni procedure or any α‐level group sequential method. In comparison with marginal testing, there is an overall power loss for the test of the secondary endpoint since a claim of a positive result depends on the significance of the primary endpoint in the hierarchical testing sequence. We propose two group sequential testing procedures with improved secondary power: the improved Bonferroni procedure and the improved Pocock procedure. The proposed procedures use the correlation between the interim and final statistics for the secondary endpoint while applying graphical approaches to transfer the significance level from the primary endpoint to the secondary endpoint. The procedures control the familywise error rate (FWER) strongly by construction and this is confirmed via simulation. We also compare the proposed procedures with other commonly used group sequential procedures in terms of control of the FWER and the power of rejecting the secondary hypothesis. An example is provided to illustrate the procedures. 相似文献
8.
Valid surrogate endpoints S can be used as a substitute for a true outcome of interest T to measure treatment efficacy in a clinical trial. We propose a causal inference approach to validate a surrogate by incorporating longitudinal measurements of the true outcomes using a mixed modeling approach, and we define models and quantities for validation that may vary across the study period using principal surrogacy criteria. We consider a surrogate-dependent treatment efficacy curve that allows us to validate the surrogate at different time points. We extend these methods to accommodate a delayed-start treatment design where all patients eventually receive the treatment. Not all parameters are identified in the general setting. We apply a Bayesian approach for estimation and inference, utilizing more informative prior distributions for selected parameters. We consider the sensitivity of these prior assumptions as well as assumptions of independence among certain counterfactual quantities conditional on pretreatment covariates to improve identifiability. We examine the frequentist properties (bias of point and variance estimates, credible interval coverage) of a Bayesian imputation method. Our work is motivated by a clinical trial of a gene therapy where the functional outcomes are measured repeatedly throughout the trial. 相似文献
9.
Cluster randomized trials (CRTs) are widely used in different areas of medicine and public health. Recently, with increasing complexity of medical therapies and technological advances in monitoring multiple outcomes, many clinical trials attempt to evaluate multiple co-primary endpoints. In this study, we present a power analysis method for CRTs with binary co-primary endpoints. It is developed based on the GEE (generalized estimating equation) approach, and three types of correlations are considered: inter-subject correlation within each endpoint, intra-subject correlation across endpoints, and inter-subject correlation across endpoints. A closed-form joint distribution of the K test statistics is derived, which facilitates the evaluation of power and type I error for arbitrarily constructed hypotheses. We further present a theorem that characterizes the relationship between various correlations and testing power. We assess the performance of the proposed power analysis method based on extensive simulation studies. An application example to a real clinical trial is presented. 相似文献
10.
Silvia Calderazzo;Manuel Wiesenfarth;Annette Kopp-Schneider; 《Biometrical journal. Biometrische Zeitschrift》2024,66(1):2200322
Bayesian clinical trials can benefit from available historical information through the specification of informative prior distributions. Concerns are however often raised about the potential for prior-data conflict and the impact of Bayes test decisions on frequentist operating characteristics, with particular attention being assigned to inflation of type I error (TIE) rates. This motivates the development of principled borrowing mechanisms, that strike a balance between frequentist and Bayesian decisions. Ideally, the trust assigned to historical information defines the degree of robustness to prior-data conflict one is willing to sacrifice. However, such relationship is often not directly available when explicitly considering inflation of TIE rates. We build on available literature relating frequentist and Bayesian test decisions, and investigate a rationale for inflation of TIE rate which explicitly and linearly relates the amount of borrowing and the amount of TIE rate inflation in one-arm studies. A novel dynamic borrowing mechanism tailored to hypothesis testing is additionally proposed. We show that, while dynamic borrowing prevents the possibility to obtain a simple closed-form TIE rate computation, an explicit upper bound can still be enforced. Connections with the robust mixture prior approach, particularly in relation to the choice of the mixture weight and robust component, are made. Simulations are performed to show the properties of the approach for normal and binomial outcomes, and an exemplary application is demonstrated in a case study. 相似文献
11.
In the cluster randomised study design, the data collected have a hierarchical structure and often include multivariate outcomes. We present a flexible modelling strategy that permits several normally distributed outcomes to be analysed simultaneously, in which intervention effects as well as individual-level and cluster-level between-outcome correlations are estimated. This is implemented in a Bayesian framework which has several advantages over a classical approach, for example in providing credible intervals for functions of model parameters and in allowing informative priors for the intracluster correlation coefficients. In order to declare such informative prior distributions, and fit models in which the between-outcome covariance matrices are constrained, priors on parameters within the covariance matrices are required. Careful specification is necessary however, in order to maintain non-negative definiteness and symmetry between the different outcomes. We propose a novel solution in the case of three multivariate outcomes, and present a modified existing approach and novel alternative for four or more outcomes. The methods are applied to an example of a cluster randomised trial in the prevention of coronary heart disease. The modelling strategy presented would also be useful in other situations involving hierarchical multivariate outcomes. 相似文献
12.
Bayesian hierarchical models have been applied in clinical trials to allow for information sharing across subgroups. Traditional Bayesian hierarchical models do not have subgroup classifications; thus, information is shared across all subgroups. When the difference between subgroups is large, it suggests that the subgroups belong to different clusters. In that case, placing all subgroups in one pool and borrowing information across all subgroups can result in substantial bias for the subgroups with strong borrowing, or a lack of efficiency gain with weak borrowing. To resolve this difficulty, we propose a hierarchical Bayesian classification and information sharing (BaCIS) model for the design of multigroup phase II clinical trials with binary outcomes. We introduce subgroup classification into the hierarchical model. Subgroups are classified into two clusters on the basis of their outcomes mimicking the hypothesis testing framework. Subsequently, information sharing takes place within subgroups in the same cluster, rather than across all subgroups. This method can be applied to the design and analysis of multigroup clinical trials with binary outcomes. Compared to the traditional hierarchical models, better operating characteristics are obtained with the BaCIS model under various scenarios. 相似文献
13.
Developing A Regional Ecological Risk Assessment: A Case Study of a Tasmanian Agricultural Catchment
A regional ecological risk assessment was conducted for the Mountain River catchment in Tasmania, Australia. The Relative Risk Model was used in conjunction with geographic information systems interpretations. Stakeholder values were used to develop assessment endpoints, and regional stressors and habitats were identified. The risk hypotheses expressed in the conceptual model were that agriculture and land clearing for rural residential are producing multiple stressors that have potential for contamination of local waterbodies, eutrophication, changes in hydrology, reduction in the habitat of native flora and fauna, reductions in populations of beneficial insects in agricultural production systems, increased weed competition in pastures, and loss of aesthetic value in residential areas. In the risk analysis the catchment was divided into risk regions based on topography and land use. Stressors were ranked on likelihood of occurrence, while habitats were ranked on percentage land area. Risk characterization showed risks to the maintenance of productive primary industries were highest across all risk regions, followed by maintenance of a good residential environment and maintenance of fish populations. Sensitivity analysis was conducted to show the variability in risk outcomes stemming from uncertainty about stressors and habitats. Outcomes from this assessment provide a basis for planning regional environmental monitoring programs. 相似文献
14.
Annette Kopp-Schneider Silvia Calderazzo Manuel Wiesenfarth 《Biometrical journal. Biometrische Zeitschrift》2020,62(2):361-374
In the era of precision medicine, novel designs are developed to deal with flexible clinical trials that incorporate many treatment strategies for multiple diseases in one trial setting. This situation often leads to small sample sizes in disease-treatment combinations and has fostered the discussion about the benefits of borrowing of external or historical information for decision-making in these trials. Several methods have been proposed that dynamically discount the amount of information borrowed from historical data based on the conformity between historical and current data. Specifically, Bayesian methods have been recommended and numerous investigations have been performed to characterize the properties of the various borrowing mechanisms with respect to the gain to be expected in the trials. However, there is common understanding that the risk of type I error inflation exists when information is borrowed and many simulation studies are carried out to quantify this effect. To add transparency to the debate, we show that if prior information is conditioned upon and a uniformly most powerful test exists, strict control of type I error implies that no power gain is possible under any mechanism of incorporation of prior information, including dynamic borrowing. The basis of the argument is to consider the test decision function as a function of the current data even when external information is included. We exemplify this finding in the case of a pediatric arm appended to an adult trial and dichotomous outcome for various methods of dynamic borrowing from adult information to the pediatric arm. In conclusion, if use of relevant external data is desired, the requirement of strict type I error control has to be replaced by more appropriate metrics. 相似文献
15.
Currently available methods for model selection used in phylogenetic analysis are based on an initial fixed-tree topology. Once a model is picked based on this topology, a rigorous search of the tree space is run under that model to find the maximum-likelihood estimate of the tree (topology and branch lengths) and the maximum-likelihood estimates of the model parameters. In this paper, we propose two extensions to the decision-theoretic (DT) approach that relax the fixed-topology restriction. We also relax the fixed-topology restriction for the Bayesian information criterion (BIC) and the Akaike information criterion (AIC) methods. We compare the performance of the different methods (the relaxed, restricted, and the likelihood-ratio test [LRT]) using simulated data. This comparison is done by evaluating the relative complexity of the models resulting from each method and by comparing the performance of the chosen models in estimating the true tree. We also compare the methods relative to one another by measuring the closeness of the estimated trees corresponding to the different chosen models under these methods. We show that varying the topology does not have a major impact on model choice. We also show that the outcome of the two proposed extensions is identical and is comparable to that of the BIC, Extended-BIC, and DT. Hence, using the simpler methods in choosing a model for analyzing the data is more computationally feasible, with results comparable to the more computationally intensive methods. Another outcome of this study is that earlier conclusions about the DT approach are reinforced. That is, LRT, Extended-AIC, and AIC result in more complicated models that do not contribute to the performance of the phylogenetic inference, yet cause a significant increase in the time required for data analysis. 相似文献
16.
17.
18.
Simon R 《Biometrics》1999,55(2):484-487
We consider the design and analysis of active control clinical trials, i.e., clinical trials comparing an experimental treatment E to a control treatment C considered to be effective. Direct comparison of E to placebo P, or no treatment, is sometimes ethically unacceptable. Much discussion of the design and analysis of such clinical trials has focused on whether the comparison of E to C should be based on a test of the null hypothesis of equivalence, on a test of a nonnull hypothesis that the difference is of some minimally medically important size delta, or on one or two-sided confidence intervals. These approaches are essentially the same for study planning. They all suffer from arbitrariness in specifying the size of the difference delta that must be excluded. We propose an alternative Bayesian approach to the design and analysis of active control trials. We derive the posterior probability that E is superior to P or that E is at least k% as good as C and that C is more effective than P. We also derive approximations for use with logistic and proportional hazard models. Selection of prior distributions is discussed, and results are illustrated using data from an active control trial of a drug for the treatment of unstable angina. 相似文献
19.
20.
王鹏飞;董利虎;谢龙飞;苗铮 《应用生态学报》2025,36(5):1298-1308
准确估算森林生物量对碳储量评估和森林资源管理具有重要意义,层次贝叶斯法作为一种可以有效提高参数稳定性的统计学方法,在森林生物量精准估算中展现出显著潜力。本研究基于黑龙江省孟家岗林场143株长白落叶松解析木数据,采用层次贝叶斯似乎不相关回归方法,构建了以胸径为自变量的一元似乎不相关混合效应模型(SURM1)和以胸径与树高为自变量的二元似乎不相关混合效应模型(SURM2),对比分析了限制最大似然估计(REML)与无先验信息(Br1)、基于数据自身先验信息(Br2)、基于历史先验信息(Br3)3种层次贝叶斯方法的拟合与预测效果。结果表明: SURM2模型在树干生物量和单木总生物量预测方面显著优于SURM1,平均绝对偏差百分比(MAPE)分别减少了7.8%和7.6%。基于数据自身先验信息的层次贝叶斯法(Br2)在参数估计稳定性方面(标准差为0.003~0.108)显著优于REML(标准差为0.052~0.540)、Br1(标准差为0.033~0.819)和Br3(标准差为0.038~0.771)。使用Br2进行预测时会产生更高的预测精度,SURM1模型在树干、树枝、树叶、树根和总生物量预测的MAPE分别为17.6%、45.1%、48.3%、25.2%、17.1%。与SURM1相比,SURM2模型在树干和总生物量的预测精度显著提升,MAPE分别减小7.3%和6.7%。在样本量较小(<60)时,有效的先验信息可以增加预测的稳定性。基于数据自身先验信息的贝叶斯方法在提高长白落叶松生物量模型预测精度与稳定性方面具有显著优势,为黑龙江地区长白落叶松生物量的精准估算提供了有效支持。 相似文献