首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genomics》2021,113(5):3325-3336
Carcass merits are widely considered as economically important traits affecting beef production in the beef cattle industry. However, the genetic basis of carcass traits remains to be well understood. Here, we applied multiple methods, including the Composite of Likelihood Ratio (CLR) and Genome-wide Association Study (GWAS), to explore the selection signatures and candidate variants affecting carcass traits. We identified 11,600 selected regions overlapping with 2214 candidate genes, and most of those were enriched in binding and gene regulation. Notably, we identified 66 and 110 potential variants significantly associated with carcass traits using single-trait and multi-traits analyses, respectively. By integrating selection signatures with single and multi-traits associations, we identified 12 and 27 putative genes, respectively. Several highly conserved missense variants were identified in OR5M13D, NCAPG, and TEX2. Our study supported polygenic genetic architecture of carcass traits and provided novel insights into the genetic basis of complex traits in beef cattle.  相似文献   

2.
T. Chang  J. Xia  L. Xu  X. Wang  B. Zhu  L. Zhang  X. Gao  Y. Chen  J. Li  H. Gao 《Animal genetics》2018,49(4):312-316
A genome‐wide association study (GWAS) was conducted for two carcass traits in Chinese Simmental beef cattle. The experimental population consisted of 1301 individuals genotyped with the Illumina BovineHD SNP BeadChip (770K). After quality control, 671 990 SNPs and 1217 individuals were retained for the GWAS. The phenotypic traits included carcass weight and bone weight, which were measured after the cattle were slaughtered at 16 to 18 months of age. Three statistical models—a fixed polygene model, a random polygene model and a composite interval mapping polygene model—were used for the GWAS. The genome‐wide significance threshold after Bonferroni correction was 7.44E‐08 (= 0.05/671 990). In this study, we detected eight and seven SNPs significantly associated with carcass weight and bone weight respectively. In total, 11 candidate genes were identified within or close to these significant SNPs. Of these, we found several novel candidate genes, including PBX1, GCNT4, ALDH1A2, LCORL and WDFY3, to be associated with carcass weight and bone weight in Chinese Simmental beef cattle, and their functional roles need to be verified in further studies.  相似文献   

3.
Over the last 30 years, Hanwoo has been selectively bred to improve economically important traits. Hanwoo is currently the representative Korean native beef cattle breed, and it is believed that it shared an ancestor with a Chinese breed, Yanbian cattle, until the last century. However, these two breeds have experienced different selection pressures during recent decades. Here, we whole-genome sequenced 10 animals each of Hanwoo and Yanbian cattle (20 total) using the Illumina HiSeq 2000 sequencer. A total of approximately 3.12 and 3.07 billion sequence reads were mapped to the bovine reference sequence assembly (UMD 3.1) at an average of approximately 10.71- and 10.53-fold coverage for Hanwoo and Yanbian cattle, respectively. A total of 17,936,399 single nucleotide polymorphisms (SNPs) were yielded, of which 22.3% were found to be novel. By annotating the SNPs, we further retrieved numerous nonsynonymous SNPs that may be associated with traits of interest in cattle. Furthermore, we performed whole-genome screening to detect signatures of selection throughout the genome. We located several promising selective sweeps that are potentially responsible for economically important traits in cattle; the PPP1R12A gene is an example of a gene that potentially affects intramuscular fat content. These discoveries provide valuable genomic information regarding potential genomic markers that could predict traits of interest for breeding programs of these cattle breeds.  相似文献   

4.
The apolipoprotein E (ApoE) gene is an important component of plasma lipoprotein, and Fas apoptosis inhibitory molecule (FAIM) is a novel anti-apoptotic gene. In this study, we researched and discussed seven genes in eight different tissues in Qinchuan cattle by quantitative Real-time PCR. The result of analysis showed that ApoE and FAIM 2 genes had a correlation with muscle and fat. PCR–RFLP was applied to analyze the genetic variations of the ApoE and FAIM 2 genes and verify the effect on growth and carcass traits in a total of 365 Qinchuan cattles. The result of haplotype analysis showed that nine different haplotypes were identified among the four SNPs in ApoE and FAIM 2 genes. The statistical analyses indicated that the four SNPs were significant association with growth and carcass traits (P < 0.05, N = 365); and the four SNPs were significant association between nine combined genotypes of candidate genes and growth and carcass traits. Taken together, our results provide the evidence that polymorphisms in candidate genes are associated with growth and carcass traits in Qinchuan cattle, and may be used as a possible candidate for marker-assisted selection and management in beef cattle breeding program.  相似文献   

5.
Korean Hanwoo cattle have been subjected to intensive artificial selection over the past four decades to improve meat production traits. Another three cattle varieties very closely related to Hanwoo reside in Korea (Jeju Black and Brindle) and in China (Yanbian). These breeds have not been part of a breeding scheme to improve production traits. Here, we compare the selected Hanwoo against these similar but presumed to be unselected populations to identify genomic regions that have been under recent selection pressure due to the breeding program. Rsb statistics were used to contrast the genomes of Hanwoo versus a pooled sample of the three unselected population (UN). We identified 37 significant SNPs (FDR corrected) in the HW/UN comparison and 21 known protein coding genes were within 1 MB to the identified SNPs. These genes were previously reported to affect traits important for meat production (14 genes), reproduction including mammary gland development (3 genes), coat color (2 genes), and genes affecting behavioral traits in a broader sense (2 genes). We subsequently sequenced (Illumina HiSeq 2000 platform) 10 individuals of the brown Hanwoo and the Chinese Yanbian to identify SNPs within the candidate genomic regions. Based on allele frequency differences, haplotype structures, and literature research, we singled out one non-synonymous SNP in the APP gene (APP: c.569C>T, Ala199Val) and predicted the mutational effect on the protein structure. We found that protein-protein interactions might be impaired due to increased exposed hydrophobic surfaces of the mutated protein. The APP gene has also been reported to affect meat tenderness in pigs and obesity in humans. Meat tenderness has been linked to intramuscular fat content, which is one of the main breeding goals for brown Hanwoo, potentially supporting a causal influence of the herein described nsSNP in the APP gene.  相似文献   

6.
Meat quality traits are the most economically important traits affecting the beef industry in Korea. We performed a whole genome quantitative trait locus (QTL) mapping study of carcass data in Hanwoo Korean cattle. Two hundred sixty-six Hanwoo steers from 65 sires were genotyped using a 10K Affymetrix SNP chip. The average SNP interval across the bovine genome was 1.5Mb. Associations between each individual SNP and four carcass traits [carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling (MAR)] were assessed using a linear mixed model of each trait. Combined linkage and linkage disequilibrium analysis (LDLA) detected six potential QTL on BTA04, 06, 13, 16, 17, and 23 at the chromosome-wise level (P<0.05). Two MAR QTL were detected at 52.2 cM of BTA06 and 46.04 cM of BTA17. We identified three genes (ARAP2, LOC539460, and LOC511424) in the QTL region of BTA06 and seven genes (RPS14, SCARB1, LOC782103, BRI3BP, AACS, DHX37, and UBC) in the QTL region of BTA17. One significant QTL for CWT was detected at 100 cM on BTA04 and the corresponding QTL region spanned 1.7 cM from 99.7 to 101.4 cM. For EMA QTL, one significant QTL was detected at 3.9 cM of BTA23 and the most likely QTL interval was 1.4 cM, placing 15 candidate genes in the marker bracket. Finally, two QTL for BFT were identified at 68 cM on BTA13 and 24 cM on BTA16. The LPIN3 gene, which is functionally associated with lipodystrophy in humans, is located in the BFT QTL on BTA13. Thus, two potential candidate genes, acetoacetyl-CoA synthetase (AACS) and lipin (LPIN), were detected in QTL regions on BTA17 for MAR and BTA13 for BFT, respectively. In conclusion, LDLA analysis can be used to detect chromosome regions harboring QTL and candidate genes with a low density SNP panel, yielding relatively narrow confidence intervals regarding location.  相似文献   

7.
The growth hormone receptor (GHR) is a membrane transmitter for the growth hormone signal transduction pathway that regulates various metabolic activities, including cell growth and expressions of cytokine genes. The presence or absence of a genetic polymorphism for the LINE-1 retroposon in the PI promoter, which specifically regulates theGHR gene expression in the liver, was screened by a novel detection method and examined for its relationships with carcass traits in Hanwoo cattle. Han woo cattle had taurine type LINE-1 present (alleleI) as well as incidine type LINE-1 absent (alleleA) promoter sequences. Three genotypes,I/I, I/A andA/A, showed frequencies of 49.1, 36.7 and 14.2%, respectively. The effects of allele A were significant on mean differences for final weight, eye muscle area, marbling score and fat color (p<0.05), but not for carcass weight, backfat thickness, final meat quality grade or meat color (p>0.05). Most 30-month old Hanwoo steers bearing the LINE-1 absent promoter had whiter fat color, heavier live weight and higher marbling score, reflecting intramuscular fat deposition inM. longissimus dorsi, compared to animals bearing a LINE-1 present promoter. This suggests that aGHR polymorphism could be a potential genetic marker for improving beef production of Hanwoo cattle.  相似文献   

8.
9.
Adiponectin (ADIPOQ) modulates several biological processes including energy homeostasis, glucose and lipid metabolism. The bovine ADIPOQ gene was located near the QTL affecting marbling, ribeye muscle area and fat thickness on BTA1. The gene encoding peroxisome proliferator-activated receptor-γ coactivator- (PPARGC1A) was located within the QTL region of the traits on BTA6. Moreover, its protein product has various biological functions such as cellular energy homeostasis, including adaptive thermogenesis, adipogenesis and gluconeogenesis. Therefore, the ADIPOQ and PPARGC1A genes are a positional and functional candidate gene for carcass traits in beef cattle. The objectives of this study were to identify polymorphisms in the bovine ADIPOQ and PPARGC1A genes, to evaluate their associations with carcass traits in Hanwoo (Korean cattle) population. We identified nine SNPs in the ADIPOQ gene. Two SNPs (DQ156119: g.1436T > C and DQ156119: g.1454A > G) in the promoter region were recognized as new SNPs identified in Hanwoo. Association analysis indicated that the g.1454A > G SNP genotype was significantly associated with effects on LMA (P = 0.004) and BF (P = 0.021). The ADIPOQ haplotype was also found to have significant effect on the LMA. In the PPARGC1A gene, we identified 11 SNPs in the two unexplored regions (intron 3 and 5). Among them, seven SNPs were located in intron 3 and four SNPs were located in intron 5. Of these 11 putative novel SNPs, two SNPs (AY839822: g.292C > T and AY839823: g.1064C > T) with minor allele frequency (MAF) > 0.20 were examined for associations with carcass traits. The association analysis revealed that both SNPs in PPARGC1A gene were significantly associated with LMA (P < 0.05). These findings suggest that the SNPs of bovine ADIPOQ and PPARGC1A genes may be a useful molecular marker for selection of carcass traits in Hanwoo.  相似文献   

10.
Hormone-sensitive lipase (HSL) is responsible for the decomposition of triglycerides in adipose tissue to release free fatty acids, and it is a key rate-limiting enzyme in the regulation of adipose tissue deposition and decomposition. The objective of this study was to evaluate the association between novel SNPs in the coding region of bovine HSL gene and carcass and meat quality traits of Chinese Simmental-cross steers. Two novel SNPs were genotyped and the 47 traits of carcass and meat quality traits were measured in the population studied. Statistical analysis revealed that the SNPs of HSL gene were associated with the carcass and meat quality traits. The individuals with TT genotypes of E1-276C>T showed significant higher dressing percentage, net meat rate, hind legs circumference, fat coverage rate, mesenteric fat and kidney fat (p < 0.05). E8-51C>T (P17S) also showed a significant association with the pH of beef and fatty acids content in Chinese Simmental cattle (p < 0.01). Our findings indicated that polymorphisms in HSL might be one of important genetic factors that influence carcass yield and meat quality in beef cattle, and it may be a useful marker for meat quality traits in future marker-assisted selection programs in beef cattle breeding and production.  相似文献   

11.
Genomic selection has proven effective for advancing genetic gain for key profit traits in dairy cattle production systems. However, its impact to-date on genetic improvement programs for beef cattle has been less effective. Despite this, the technology is thought to be particularly useful for low heritability traits such as those associated with reproductive efficiency. The objective of this study was to identify genetic variants associated with key determinants of reproductive and overall productive efficiency in beef cows. The analysis employed a large dataset derived from the national genetic evaluation program in Ireland for two of the most predominant beef breeds, viz. Charolais (n = 5 244 cows) and Limousin (n = 7 304 cows). Single nucleotide polymorphisms (SNPs) were identified as being statistically significantly associated (adj. P < 0.05) with both reproductive and productive traits for both breed types. However, there was little across breed commonality, with only two SNPs (rs110240246 and rs110344317; adj. P < 0.05) located within the genomic regions of the LCORL and MSTN genes respectively, identified in both Charolais and Limousin populations, associated with traits including carcass weight, cull-cow weight and live-weight. Significant SNPs within the MSTN gene were also associated with both reproduction and production related traits within each breed. Finally, traits including calving difficulty, calf mortality and calving interval were associated with SNPs within genomic regions comprising genes involved in cellular growth and lipid metabolism. Genetic variants identified as associated with both important reproductive efficiency and production related traits from this study warrant further analyses for their potential incorporation into breeding programmes to support the sustainability of beef cattle production.  相似文献   

12.
Molecular marker-assisted selection is a better way to satisfy the growing customer requirement with the development of beef cattle growth and breeding research. For now, quantitative trait locus (QTL) for cattle growth and carcass traits, just like body height, body length and carcass weight have been detected on bovine chromosome 6. In this study, ligand-dependent nuclear receptor corepressor-like (LCORL) was selected as the potential positional candidate gene located in chromosome 6 which is closely connected with the bovine growth and carcass traits. A total of 450 Qinchuan beef cattle were used to detect mutations in exon and its neighbouring region, and the promoter region of the bovine LCORL gene. The methods for SNPs detection were polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and created restriction site PCR (CRS-PCR), and the results of this study show that there were two variations in intron regions, the other four variations were located in the promoter region. Linkage disequilibrium analysis and haplotype analysis indicated that L78-Q4 had strong linkage disequilibrium, A T G C G C (16.2%) and G C G C A T (16.7%) had higher haplotype frequencies, G C A C A C (0.8%) and G T A C A T (0.7%) had lower haplotype frequencies. Correlation analysis indicated that SNP g. INT + 52098A >G was significantly associated with slaughter weight and carcass weight. Based on the research, we selected LCORL as the candidate gene that can contribute to improved marker-assisted selection for the meat performance of Qinchuan beef cattle.  相似文献   

13.
Chicken growth traits are economically important, but the relevant genetic mechanisms have not yet been elucidated. Herein, we performed a genome-wide association study to identify the variants associated with growth traits. In total, 860 chickens from a Gushi-Anka F2 resource population were phenotyped for 68 growth and carcass traits, and 768 samples were genotyped based on the genotyping-by-sequencing (GBS) method. Finally, 734 chickens and 321,314 SNPs remained after quality control and removal of the sex chromosomes, and these data were used to carry out a GWAS analysis. A total of 470 significant single-nucleotide polymorphisms (SNPs) for 43 of the 68 traits were detected and mapped on chromosomes (Chr) 1–6, -9, -10, -16, -18, -23, and -27. Of these, the significant SNPs in Chr1, -4, and -27 were found to be associated with more than 10 traits. Multiple traits shared significant SNPs, indicating that the same mutation in the region might have a large effect on multiple growth or carcass traits. Haplotype analysis revealed that SNPs within the candidate region of Chr1 presented a mosaic pattern. The significant SNPs and pathway enrichment analysis revealed that the MLNR, MED4, CAB39L, LDB2, and IGF2BP1 genes could be putative candidate genes for growth and carcass traits. The findings of this study improve our understanding of the genetic mechanisms regulating chicken growth and carcass traits and provide a theoretical basis for chicken breeding programs.Subject terms: Genome-wide association studies, Genetic linkage study, Development, DNA sequencing, Animal breeding  相似文献   

14.
Ultrasound technology was used to measure live animal meat traits instead of true carcass meat traits for beef production and cattle breeding by an increasing number of institutions. In this study, we analyzed the association between genetic polymorphisms of proopiomelanocortin (POMC) and ultrasound measurement traits in Chinese cattle. Using direct DNA sequencing in 322 individuals of 7 different cattle subpopulation, 7 SNPs were identified for genotyping within 790 bp region of intron 2 and exon 3 of POMC. 6586 T>G in intron 2 and 6769 C>T and 7216 C>T in exon 3 were significantly associated with ultrasound backfat thickness (UBF) (P < 0.05) and ultrasound loin muscle area (ULMA) (P < 0.01) in the total population; 6694 C>T, 6706 T>C, 6796 C>T and 6810 C>T in exon 3 were significantly associated with ULMA (P < 0.0001) in the total population. These results clearly suggest that these SNPs of POMC be benefit for selection of individuals with good quality meat in Chinese cattle breeding program. Following validation in other populations and breeds, these markers could be incorporated into breeding programs to increase the rate of improvement in carcass and meat quality traits.  相似文献   

15.
Myogenic factor 5 (Myf5) and POU class 1 homeobox 1 (POU1F1) genes play important roles in growth and development of mammals. Bovine Myf5 and POU1F1 were characterized to detect genetic variation at these loci and to replace them to economic traits in 367 cattle representing Hanwoo (325) and Angus (37). Two single nucleotide polymorphisms (SNPs) were identified in intron 2 (A1948G SNP) of Myf5 and exon 6 (A15635G SNP) of POU1F1 by sequence analyses of genomic DNA. Statistical analysis indicated that the Myf5 polymorphisms significantly (0.05) associated backfat thickness and live weight at 6-months-of-age and that POU1F1 polymorphisms significantly influenced carcass weight and live weight at 24-month of age, and backfat thickness. The interaction between Myf5 and POU1F1 was significant on carcass weight, M. longissimus dorsi area, backfat thickness and marbling score. The results implicate Myf5 and POU1F1 as candidate genes of growth and carcass traits, and suggest that the interaction between Myf5 and POU1F1 strongly affect growth and carcass traits in cattle.  相似文献   

16.
The insulin-induced gene 1 (Insig-1) is a regulator of lipid metabolism and plays an important role in the sterol-mediated regulation of SREBP, SCAP and HMG-CoA reductase. We used PCR-RFLP and DNA sequencing to detect polymorphisms of the Insig-1 gene in 215 individuals of the Qinchuan cattle breed. Four SNPs [4366(A>G), 4534(T>C), 5001(T>C), and 5235(G>A)] were indentified. The association of the genetic viariation with growth and carcass traits (body length, withers height, hip width, slaughter weight, and carcass weight) was analyzed. The individuals with better performance had the GG genotype at locus A4366G, and CC genotypes at locus T4534C and locus T5001C. These could be used for beef cattle breeding improvement in China. Additionally, linkage disequilibrium analysis reflected that all mutations were in low linkage disequilibrium with each other. We concluded that polymorphisms in the Insig-1 gene are associated with growth and carcass traits and could be used for marker-assisted selection and management in beef cattle breeding programs.  相似文献   

17.
Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate genes emerging from this GWAS may inform the search for causative mutations that could underpin genomic breeding for improved growth rates.  相似文献   

18.
The routine collection and use of genomic data are useful for effectively managing breeding programs for endangered populations. Linkage disequilibrium (LD) using high‐density DNA markers has been widely used to determine population structures and predict the genomic regions that are associated with economic traits in beef cattle. The extent of LD also provides information about historical events, including past effective population size (Ne), and it allows inferences on the genetic diversity of breeds. The objective of this study was to estimate the LD and Ne in three Korean cattle breeds that are genetically similar but have different coat colors (Brown, Brindle and Jeju Black Hanwoo). Brindle and Jeju Black are endangered breeds with small populations, whereas Brown Hanwoo is the main breeding population in Korea. DNA samples from these cattle breeds were genotyped using the Illumina BovineSNP50 Bead Chip. We examined 13 cattle breeds, including European taurines, African taurines and indicines, and hybrids to compare their LD values. Brown Hanwoo consistently had the lowest mean LD compared to Jeju Black, Brindle and the other 13 cattle breeds (0.13, 0.19, 0.21 and 0.15–0.22 respectively). The high LD values of Brindle and Jeju Black contributed to small Ne values (53 and 60 respectively), which were distinct from that of Brown Hanwoo (531) for 11 generations ago. The differences in LD and Ne for each breed reflect the breeding strategy applied. The Ne for these endangered cattle breeds remain low; thus, effort is needed to bring them back to a sustainable tract.  相似文献   

19.
“Genome-based precision feeding” is a concept that involves the application of customised diets to different genetic groups of cattle. We investigated the effects of the genomic estimated breeding value (gEBV) and dietary energy to protein ratio (DEP) on growth performance, carcass traits, and lipogenic gene expression in Hanwoo (Korean cattle) steers. Forty-four Hanwoo steers (BW = 636 kg, age = 26.9 months) were genotyped using the Illumina Bovine 50 K BeadChip. The gEBV was calculated using genomic best linear unbiased prediction. Animals were separated into high gEBV of marbling score or low-gMS groups based on the upper and lower 50% groupings of the reference population, respectively. Animals were assigned to one of four groups in a 2 × 2 factorial arrangement: high gMS/high DEP (0.084 MJ/g), high gMS/low DEP (0.079 MJ/g), low gMS/high DEP, and low gMS/low DEP. Steers were fed concentrate with a high or low DEP for 31 weeks. The BW tended to be higher (0.05 < P < 0.1) in the high-gMS groups compared to the low-gMS groups at 0, 4, 8, 12, and 20 weeks. The average daily gain (ADG) tended to be lower (P = 0.08) in the high-gMS group than in the low-gMS group. Final BW and measured carcass weight (CW) were positively correlated with the gEBV of carcass weight (gCW). The DEP did not affect ADG. Neither the gMS nor the DEP affected the MS and beef quality grade. The intramuscular fat (IMF) content in the longissimus thoracis (LT) tended to be higher (P = 0.08) in the high-gMS groups than in the low-gMS groups. The mRNA levels of lipogenic acetyl-CoA carboxylase and fatty acid binding protein 4 genes in the LT were higher (P < 0.05) in the high-gMS group than in the low-gMS group. Overall, the IMF content tended to be affected by the gMS, and the genetic potential (i.e., gMS) was associated with the functional activity of lipogenic gene expression. The gCW was associated with the measured BW and CW. The results demonstrated that the gMS and the gCW may be used as early prediction indexes for meat quality and growth potential of beef cattle.  相似文献   

20.
Improving meat quality is the best way to enhance profitability and strengthen competitiveness in beef industry. Identification of genetic variants that control beef quality traits can help breeders design optimal breeding programs to achieve this goal. We carried out a genome-wide association study for meat quality traits in 1141 Simmental cattle using the Illumina Bovine HD 770K SNP array to identify the candidate genes and genomic regions associated with meat quality traits for beef cattle, including fat color, meat color, marbling score, longissimus muscle area, and shear force. In our study, we identified twenty significant single-nucleotide polymorphisms (SNPs) (p < 1.47 × 10?6) associated with these five meat quality traits. Notably, we observed several SNPs were in or near eleven genes which have been reported previously, including TMEM236, SORL1, TRDN, S100A10, AP2S1, KCTD16, LOC506594, DHX15, LAMA4, PREX1, and BRINP3. We identified a haplotype block on BTA13 containing five significant SNPs associated with fat color trait. We also found one of 19 SNPs was associated with multiple traits (shear force and longissimus muscle area) on BTA7. Our results offer valuable insights to further explore the potential mechanism of meat quality traits in Simmental beef cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号