首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In gene expression profiling studies, including single-cell RNA sequencing(sc RNA-seq)analyses, the identification and characterization of co-expressed genes provides critical information on cell identity and function. Gene co-expression clustering in sc RNA-seq data presents certain challenges. We show that commonly used methods for single-cell data are not capable of identifying co-expressed genes accurately, and produce results that substantially limit biological expectations of co-expressed genes. Herein, we present single-cell Latent-variable Model(sc LM), a gene coclustering algorithm tailored to single-cell data that performs well at detecting gene clusters with significant biologic context. Importantly, sc LM can simultaneously cluster multiple single-cell datasets, i.e., consensus clustering, enabling users to leverage single-cell data from multiple sources for novel comparative analysis. sc LM takes raw count data as input and preserves biological variation without being influenced by batch effects from multiple datasets. Results from both simulation data and experimental data demonstrate that sc LM outperforms the existing methods with considerably improved accuracy. To illustrate the biological insights of sc LM, we apply it to our in-house and public experimental sc RNA-seq datasets. sc LM identifies novel functional gene modules and refines cell states, which facilitates mechanism discovery and understanding of complex biosystems such as cancers. A user-friendly R package with all the key features of the sc LM method is available at https://github.com/QSong-github/sc LM.  相似文献   

2.
Head and neck squamous cell carcinoma (HNSCC) has been widely reported and considered as one of the most threatening diseases to human health. Derived from complicated tissue subtypes, HNSCC has diverse symptoms and pathogenesis. They make the identification of the core carcinogenic factors of such diseases at the multi-cell level difficult. With the development of single-cell sequencing technologies, the effects of non-malignant cells on traditional bulk sequencing data can be eliminated directly. On the basis of fresh single-cell RNA-seq data, we set up a computational filtering strategy for tumor cell identification in an expression rule manner. This strategy can reveal the accurate expression distinction between tumor cells and adjacent tumor microenvironment, which are all supported by literature reports. Validated by several independent datasets, these rule genes can further group HNSCC patients with significant difference on survival risks. Thus, the establishment of our computational approach may not only provide an efficient tool to identify malignant cells in the tumor ecosystem but also deepen our understanding of tumor heterogeneity and tumorigenesis.  相似文献   

3.
4.
《Genomics》2022,114(3):110353
It has been demonstrated that miRNAs are involved in many biological processes including cell proliferation and differentiation, apoptosis, and stress responses. Although single-cell RNA sequencing technology is prevailing nowadays, it still remains challenging in quantifying miRNA at the single-cell level. Herein, we present the computational methods to infer the single-cell miRNA expression level using its target gene abundances. Firstly, we developed an enrichment-based approach in estimating miRNA expression considering miRNA-mRNA regulation information and miRNA-mRNA correlation signal captured from existing TCGA datasets. Further efforts were made to infer the miRNA expression with machine learning models. The methods were applied to compare the accuracy and robustness with the simulated single-cell data. Finally, we applied the method in single-cell RNA-seq triple negative breast cancer (TNBC) patients to further discover miRNA marker at the single-cell level for the malignant cells. Our tool is available online at: https://github.com/ChengkuiZhao/Single-cell-miRNA-prediction.  相似文献   

5.
6.
7.
The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downstream analysis of the scRNA-seq data. We propose a statistical method, SDImpute (Single-cell RNA-seq Dropout Imputation), to implement block imputation for dropout events in scRNA-seq data. SDImpute automatically identifies the dropout events based on the gene expression levels and the variations of gene expression across similar cells and similar genes, and it implements block imputation for dropouts by utilizing gene expression unaffected by dropouts from similar cells. In the experiments, the results of the simulated datasets and real datasets suggest that SDImpute is an effective tool to recover the data and preserve the heterogeneity of gene expression across cells. Compared with the state-of-the-art imputation methods, SDImpute improves the accuracy of the downstream analysis including clustering, visualization, and differential expression analysis.  相似文献   

8.
9.
10.
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.  相似文献   

11.
12.
13.
Non-clear renal cell carcinomas (nccRCCs) are less frequent in kidney cancer with histopathological heterogeneity. A better understanding of the tumor biology of nccRCC can provide more effective treatment paradigms for different subtypes. To reveal the heterogeneity of tumor microenvironment (TME) in nccRCC, we performed 10x sing-cell genomics on tumor and normal tissues from patients with papillary renal cell carcinoma (pRCC), chromophobe RCC (chrRCC), collecting duct carcinoma (CDRCC) and sarcomatoid RCC (sarRCC). 15 tissue samples were finally included. 34561 cells were identified as 16 major cell clusters with 34 cell subtypes. Our study presented the sing-cell landscape for four types of nccRCC, and demonstrated that CD8+ T cells exhaustion, tumor-associated macrophages (TAMs) and sarcomatoid process were the pivotal factors in immunosuppression of nccRCC tissues and were closely correlated with poor prognosis. Abnormal metabolic patterns were present in both cancer cells and tumor-infiltrating stromal cells, such as fibroblasts and endothelial cells. Combined with CIBERSORTx tool, the expression data of bulk RNA-seq from TCGA were labeled with cell types of our sing-cell data. Calculation of the relative abundance of cell types revealed that greater proportion of exhausted CD8+ T cells, TAMs and sarRCC derived cells were correlated with poor prognosis in the cohort of 274 nccRCC patients. To the best of our knowledge, this is the first study that provides a more comprehensive sight about the heterogeneity and tumor biology of nccRCC, which may potentially facilitate the development of more effective therapies for nccRCC.Subject terms: Cancer genomics, Cancer microenvironment, Renal cell carcinoma  相似文献   

14.
To characterize the genetic variation of alternative splicing, we develop GLiMMPS, a robust statistical method for detecting splicing quantitative trait loci (sQTLs) from RNA-seq data. GLiMMPS takes into account the individual variation in sequencing coverage and the noise prevalent in RNA-seq data. Analyses of simulated and real RNA-seq datasets demonstrate that GLiMMPS outperforms competing statistical models. Quantitative RT-PCR tests of 26 randomly selected GLiMMPS sQTLs yielded a validation rate of 100%. As population-scale RNA-seq studies become increasingly affordable and popular, GLiMMPS provides a useful tool for elucidating the genetic variation of alternative splicing in humans and model organisms.  相似文献   

15.
16.
CellDepot containing over 270 datasets from 8 species and many tissues serves as an integrated web application to empower scientists in exploring single-cell RNA-seq (scRNA-seq) datasets and comparing the datasets among various studies through a user-friendly interface with advanced visualization and analytical capabilities. To begin with, it provides an efficient data management system that users can upload single cell datasets and query the database by multiple attributes such as species and cell types. In addition, the graphical multi-logic, multi-condition query builder and convenient filtering tool backed by MySQL database system, allows users to quickly find the datasets of interest and compare the expression of gene(s) across these. Moreover, by embedding the cellxgene VIP tool, CellDepot enables fast exploration of individual dataset in the manner of interactivity and scalability to gain more refined insights such as cell composition, gene expression profiles, and differentially expressed genes among cell types by leveraging more than 20 frequently applied plotting functions and high-level analysis methods in single cell research. In summary, the web portal available at http://celldepot.bxgenomics.com, prompts large scale single cell data sharing, facilitates meta-analysis and visualization, and encourages scientists to contribute to the single-cell community in a tractable and collaborative way. Finally, CellDepot is released as open-source software under MIT license to motivate crowd contribution, broad adoption, and local deployment for private datasets.  相似文献   

17.
Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.  相似文献   

18.
19.
20.
单细胞转录组测序(Single-cell RNA sequencing,scRNA-seq)可以在单细胞水平描绘出每个细胞同一基因的表达量在不同细胞间的表达水平差异,使得在单细胞水平重新认识各种组织器官成为可能.目前对心脏的测序研究正从传统的普通转录组水平过渡到单细胞水平,对小鼠和人的心脏的测序陆续地发表出来.概述了s...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号