首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene oxide (PEO)-based solid polymer electrolytes (SPE) have garnered recognition as highly promising candidates for advanced lithium-metal batteries. However, the practical application of PEO-based SPE is hindered by its low critical current density (CCD) resulting from undesired dendrite growth. In this study, a PEO-based SPE that exhibits an ultra-high CCD (4 mA cm−2) is presented and enhanced lithium ionic conductivity through the incorporation of small amounts of P2S5 (PS). The crystalline Li2O-rich and P/S-containing solid electrolyte interphase (SEI) is revealed by cryo-electron microscope (cryo-EM) and Time of flight secondary ion mass spectrometry (TOF-SIMS), which inhibits dendrite growth and adverse reactions between SPE and reductive lithium, thus offering a spherical growth behavior for dendrite-free lithium metal anode. Consequently, utilizing the PS-integrated SPE, a Li-Li symmetric cell demonstrates reduced resistance during operation, enabling stable cycles exceeding 200 hours at 0.5 mA cm−2 and 0.5 mAh cm−2, a stringent test condition for PEO-based electrolytes. Moreover, a Li/SPE/LiFePO4 (LFP) pouch cell exhibits 80% capacity retention after 100 cycles with 50 µm Li and 30 µm PEO electrolyte, showcasing its potential for practical applications.  相似文献   

2.
The role of graphene host structure/chemistry in plating–stripping in lithium metal anodes employed for lithium metal batteries is first examined in this study. Structural and chemical defects are bad, since highly defective graphene promotes unstable solid electrolyte interphase (SEI) growth. This consumes the fluoroethylene carbonate (FEC) additive in the carbonate electrolyte and is correlated with rapid decay in Coulombic efficiency (CE) and formation of filament‐like Li dendrites. A unique flow‐aided sonication exfoliation method is employed to synthesize “defect‐free” graphene (df‐G), allowing for a direct performance comparison with conventional reduced graphene oxide (r‐GO). At cycle 1, the r‐GO is better electrochemically wetted by Li than df‐G, indicating that initially it is more lithiophilic. With cycling, the nucleation overpotential with r‐GO becomes higher than with df‐G, indicating less facile plating reactions. The df‐G yields state‐of‐the‐art electrochemical performance, with the post cycled metal surface being relatively smooth and dendrite‐free. Conversely, r‐GO templates have CE rapidly degrade from the onset, with extensive dendrites after cycling. Severe SEI growth and associated FEC depletion with r‐GO are further confirmed by electrochemical impedance analysis and surface science methods. A new design rule is provided for Li metal templates: An ideal host must be noncatalytic toward SEI formation.  相似文献   

3.
The progress of aqueous zinc batteries (AZBs) is limited by the poor cycling life due to Zn anode instability, including dendrite growth, surface corrosion, and passivation. Inspired by the anti-corrosion strategy of steel industry, a compounding corrosion inhibitor (CCI) is employed as the electrolyte additive for Zn metal anode protection. It is shown that CCI can spontaneously generate a uniform and ≈30 nm thick solid-electrolyte interphase (SEI) layer on Zn anode with a strong adhesion via Zn O bonding. This SEI layer efficiently prohibits water corrosion and guides homogeneous Zn deposition without obvious dendrite formation. This enables reversible Zn deposition and dissolution for over 1100 h under the condition of 1 mA cm−2 and 1 mAh cm−2 in symmetric cells. The Zn-MnO2 full cells with CCI-modified electrolyte deliver an ultralow capacity decay rate (0.013% per cycle) at 0.5 A g−1 over 1000 cycles. Such an innovative strategy paves a low-cost way to achieve AZBs with long lifespan.  相似文献   

4.
The growing requirements for electrified  applications entail exploring alternative battery systems. Lithium-sulfur batteries (LSBs) have emerged as a promising, cost-effective, and sustainable solution; however, their practical commercialization is impeded by several intrinsic challenges. With the aim of surpassing these challenges, the implementation of a holistic LSB concept is proposed. To this end, the effectiveness of coupling a high-performing 2D graphene-based sulfur cathode with a well-suited sparingly solvating electrolyte (SSE) is reported. The incorporation of bis(fluorosulfonyl)imide (LiFSI) salt to tune sulfolane and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether based SSE enables the formation of a robust and compact lithium fluoride-rich solid electrolyte interphase. Consequently, the lithium compatibility is improved, achieving a high Coulombic efficiency (CE) of 98.8% in the Li||Cu cells and enabling thin and dense lithium depositions. When combined with a high-performing 2D graphene-based sulfur cathode, a symbiotic effect is shown, leading to high discharge capacities, remarkable rate capability (2.5 mAh cm−2 at C/2), enhanced cell stability, and wide temperature applicability. Furthermore, the scalability of this strategy is successfully demonstrated by assembling high-performing monolayer prototype cells with a total capacity of 93 mAh, notable capacity retention of 70% after 100 cycles, and a high average CE of 99%.  相似文献   

5.
Lithium (Li) metal is a key anode material for constructing next generation high energy density batteries. However, dendritic Li deposition and unstable solid electrolyte interphase (SEI) layers still prevent practical application of Li metal anodes. In this work, it is demonstrated that an uniform Li coating can be achieved in a lithium fluoride (LiF) decorated layered structure of stacked graphene (SG), leading to the formation of an SEI‐functionalized membrane that retards electron transfer by three orders of magnitude to avoid undesirable Li deposition on the top surface, and ameliorates Li+ ion migration to enable uniform and dendrite‐free Li deposition beneath such an interlayer. Surface chemistry analysis and density functional theory calculations demonstrate that these beneficial features arise from the formation of C–Fx surface components on the SG sheets during the Li coating process. Based on such an SEI‐functionalized membrane, stable cycling at high current densities up to 3 mA cm?2 and Li plating capacities up to 4 mAh cm?2 can be realized in LiPF6/carbonate electrolytes. This work elucidates the promising strategy of modifying Li plating behavior through the SEI‐functionalized carbon structure, with significantly improved cycling stability of rechargeable Li metal anodes.  相似文献   

6.
Uncontrolled transport of anions leads to many issues, including concentration polarization, excessive interface side reactions, and space charge-induced lithium dendrites at the anode/electrolyte interface, which severely deteriorates the cycling stability of lithium metal batteries. Herein, an asymmetrical polymer electrolyte modified by a boron-containing single-ion conductor (LiPVAOB), is designed to inhibit the nonuniform aggregation of free anions in the vicinity of the lithium anode through the repulsion effect improving the lithium-ion transference number to 0.63. This LiPVAOB exerts a repulsion interaction with free anions even at a long distance and a selective effect for free anions transport, which diminishes uneven aggregation of free anions at the interface and suppresses space charges-induced lithium dendrites growth. Consequently, the assembled Li||Li cell delivers an ultra-long cycle for over 5400 h. The Li||LiFePO4 cell exhibits outstanding cycle performance with a capacity retention of 93% over 4500 cycles. In particular, the assembled high-voltage Li||Li1.2Ni0.2Mn0.6O2 cell (charged to 4.8 V) exhibits good cycle stability with a high specific capacity of 245 mAh g−1. This designed polymer electrolyte provides a promising strategy for regulating ion transport to inhibit space charge-induced lithium dendrite growth for high-performance lithium metal batteries.  相似文献   

7.
Use of a protective coating on a lithium metal anode (LMA) is an effective approach to enhance its coulombic efficiency and cycling stability. Here, a facile approach to produce uniform silver nanoparticle‐decorated LMA for high‐performance Li metal batteries (LMBs) is reported. This effective treatment can lead to well‐controlled nucleation and the formation of a stable solid electrolyte interphase (SEI). Ag nanoparticles embedded in the surface of Li anodes induce uniform Li plating/stripping morphologies with reduced overpotential. More importantly, cross‐linked lithium fluoride‐rich interphase formed during Ag+ reduction enables a highly stable SEI layer. Based on the Ag‐LiF decorated anodes, LMBs with LiNi1/3Mn1/3Co1/3O2 cathode (≈1.8 mAh cm?2) can retain >80% capacity over 500 cycles. The similar approach can also be used to treat sodium metal anodes. Excellent stability (80% capacity retention in 10 000 cycles) is obtained for a Na||Na3V2(PO4)3 full cell using a Na‐Ag‐NaF/Na anode cycled in carbonate electrolyte. These results clearly indicate that synergetic control of the nucleation and SEI is an efficient approach to stabilize rechargeable metal batteries.  相似文献   

8.
The rapid growth of lithium dendrites has seriously hindered the development and practical application of high-energy-density all-solid-state lithium metal batteries (ASSLMBs). Herein, a soft carbon (SC)-nano Li6.4La3Zr1.4Ta0.6O12 (LLZTO) (with high ionic conductivity and diffusion coefficient) mixed ionic and electronic conducting interface layer is designed to promote the rapid migration of Li+ at the interfacial layer, induce the uniform deposition of lithium metal on nanoscale (nano) LLZTO ion-conducting network inside the interface layer, effectively suppress the growth of lithium dendrites, and significantly improve the electrochemical performance of ASSLMBs. LiZrO2@LiCoO2(LZO@LCO)/Li6PS5Cl(LPSCl)-nano LLZTO/Li ASSLMB achieves high current density (12.5 mA cm−2), ultra-high areal capacity (15 mAh cm−2, corresponding to LZO@LCO mass loadings of 111.11 mg cm−2), and ultra-long cycle life (20 000 cycles). Therefore, the introduction of SC-nano LLZTO mixed conducting interface layer can greatly improve the interfacial stability between solid-state electrolyte (SSE) and lithium metal anode to enable dendrite-free ASSLMBs.  相似文献   

9.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   

10.
Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm?2 and stable electrodeposition capabilities of 4 mAh cm?2 at an ultrahigh current density of 4 mA cm?2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.  相似文献   

11.
Despite its ultrahigh theoretical capacity and ultralow redox electrochemical potential, the practical application of lithium metal anodes is still hampered by severe dendrite growth and unstable solid electrolyte interphase (SEI). Herein, a self-assembled lithiophilic interface (SALI) for regulating Li electroplating behavior is constructed by introducing a meticulously synthesized Ni-bis(dithiolene)-based molecule (NiS4-COOH) into a hybrid fluorinated ester-ether electrolyte. The NiS4-COOH molecules with carboxyl functional groups can spontaneously anchor on the Li metal surface to form a SALI, whose abundant Ni-bis(dithiolene) sites can effectively reduce the initial Li deposition overpotential and guide the subsequent uniform Li electrodeposition. Moreover, due to the interaction between the coordination unsaturated Ni atom and the negatively charged PF6, the NiS4-COOH additive can significantly change the ionic coordination environment in the electrolyte, which is greatly conducive to suppressing PF6 decomposition, optimizing SEI composition and accelerating Li-ion transfer. Consequently, the NiS4-COOH-modified electrolyte leads to impressive electrochemical performance of Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 batteries, delivering ultrahigh Coulombic efficiencies, considerable capacity retention, and good rate performance even at high areal active material loadings. This study presents the great potential of SALIs derived from multifunctional metal-organic hybrid electrolyte additives toward high-specific-energy Li metal batteries.  相似文献   

12.
Due to high ionic conductivity and low cost, Li1.4Al0.4Ti1.6(PO4)3 (LATP) has emerged as a promising solid‐state electrolyte for next‐generation lithium (Li) metal solid‐state batterie with high safety performance and energy density. However, the extremely high impedance and surface instability of LATP with Li metal retard its practical application. Herein, a novel method is proposed to construct an ultrathin ZnO layer that is tightly coated on the LATP pellets, surface (ZnO@LATP) via magnetron sputtering, which in situ reacts with Li to form a low electronic conductivity and multifunctional solid electrolyte interphase (SEI). The formed SEI can not only effectively lower the interfacial resistance, but also overcome the side reactions of LATP with the Li metal anode and suppress the Li dendrite growth. Specifically, the interface resistance decreases from 80 554 to 353 Ω and the overpotential reduces from 1 V to 20 mV. As a result, the Li/ZnO@LATP@ZnO/Li symmetric batteries can stably cycle for more than 2000 h without short circuit at 0.05 mA cm?2 and Li/ZnO@LATP/LiFePO4 batteries show excellent cycle stability for 200 cycles at 0.1 C. This work highlights the significance of multifunctional interphase between LATP and Li metal for improvement of interfacial impedance and instability.  相似文献   

13.
The mechanically and electrochemically stable and ionically conducting solid electrolyte interphase (SEI) is important for the stabilization of metal anodes. Since SEIs are originally absent in aqueous zinc metal batteries (AZMBs), it is very challenging to suppress water-induced side reactions and dendrite growth of Zn metal anodes (ZMAs). Herein, a gradient-structured and robust solid gradient SEI, consisting of B,O-inner and F,O-exterior layer, in situ formed by hydrated eutectic electrolyte for the homogeneous and reversible Zn deposition, is demonstrated. Moreover, the molar ratio of acetamide to Zn salt is modulated to prohibit the water activity and the hydrolysis of BF4 as well as to achieve high ionic conductivity owing to the regulation of the solvation sheath of Zn2+. Consequently, the eutectic electrolyte allows Zn||Zn symmetric cells to achieve a cycling lifespan of over 4400 h at 0.5 mA cm−2 as well as Zn||PANI full cells to deliver a high capacity retention of 73.2% over 4000 cycles at 1 A g−1 and to demonstrate the stable operation at low temperatures. This work provides the rational design for the hydrated eutectic electrolyte and the corresponding gradient SEIs for dendrite-free and stable Zn anodes even under harsh conditions.  相似文献   

14.
All-solid-state lithium metal batteries (ASSLMBs) hold great promise for the development of next-generation high-safety, high-energy-density lithium batteries, but still face the challenges of lithium dendrite growth and thickness. Herein, the ultrathin PEO-based composite solid polymer electrolyte (denoted as PAL) supported by a low-density self-supporting aramid nanofiber (ANF) aerogel framework is developed. The ANF aerogel obtained by a novel CO2-assisted induced self-assembly method has a well-designed bilayer structure with double cross-linking degree. Benefiting from the intermolecular interaction between ANFs and PEO, the PAL achieves an ultrathin thickness (20 µm) with excellent thermal stability and mechanical strength. Meanwhile, due to the modulation of ionic pathways by the functionalized ANF, the PAL achieves uniform lithium deposition without dendrites, resulting in stable long cycling (1400 h) for symmetric cells. Consequently, the Li|PAL|LiFePO4 (LFP) cell has excellent long-term cycling stability (1 C, >700 cycles, Coulombic efficiency > 99.8%) and fast charge/discharge performance (rate, 10 C). More practically, the Li|PAL|LFP cell achieves an energy density of 180 Wh kg−1 due to the ability to match a high-loading (8 mg cm−2) cathode. Furthermore, the double-layer Li|PAL|LFP pouch cell demonstrates excellent flexibility and safety in cycling and abuse tests.  相似文献   

15.
The safety hazards and low Coulombic efficiency originating from the growth of lithium dendrites and decomposition of the electrolyte restrict the practical application of Li metal batteries (LMBs). Inspired by the low cost of low concentration electrolytes (LCEs) in industrial applications, dual‐salt LCEs employing 0.1 m Li difluorophosphate (LiDFP) and 0.4 m LiBOB/LiFSI/LiTFSI are proposed to construct a robust and conductive interphase on a Li metal anode. Compared with the conventional electrolyte using 1 m LiPF6, the ionic conductivity of LCEs is reduced but the conductivity decrement of the separator immersed in LCEs is moderate, especially for the LiDFP–LiFSI and LiDFP–LiTFSI electrolytes. The accurate Coulombic efficiency (CE) of the Li||Cu cells increases from 83.3% (electrolyte using 1 m LiPF6) to 97.6%, 94.5%, and 93.6% for LiDFP–LiBOB, LiDFP–LiFSI, and LiDFP–LiTFSI electrolytes, respectively. The capacity retention of Li||LiFePO4 cells using the LiDFP–LiBOB electrolyte reaches 95.4% along with a CE over 99.8% after 300 cycles at a current density of 2.0 mA cm?2 and the capacity reaches 103.7 mAh g?1 at a current density of up to 16.0 mA cm?2. This work provides a dual‐salt LCE for practical LMBs and presents a new perspective for the design of electrolytes for LMBs.  相似文献   

16.
Artificial solid‐electrolyte interphase (SEI) is one of the key approaches in addressing the low reversibility and dendritic growth problems of lithium metal anode, yet its current effect is still insufficient due to insufficient stability. Here, a new principle of “simultaneous high ionic conductivity and homogeneity” is proposed for stabilizing SEI and lithium metal anodes. Fabricated by a facile, environmentally friendly, and low‐cost lithium solid‐sulfur vapor reaction at elevated temperature, a designed lithium sulfide protective layer successfully maintains its protection function during cycling, which is confirmed by both simulations and experiments. Stable dendrite‐free cycling of lithium metal anode is realized even at a high areal capacity of 5 mAh cm?2, and prototype Li–Li4Ti5O12 cell with limited lithium also achieves 900 stable cycles. These findings give new insight into the ideal SEI composition and structure and provide new design strategies for stable lithium metal batteries.  相似文献   

17.
Ultrathin all-solid-state electrolytes with an excellent Li+ transport behavior are highly desirable for developing high-energy-density solid-state lithium metal batteries. However, how to balance the electrochemical performance and their mechanical properties remains a huge challenge. Herein, an ultrathin solid electrolyte membrane with a thickness of only 3 µm and a weight of 11.7 g m−2 is well constructed by integrating individual functionalized organic with inorganic modules. Impressively, the optimized hybrid electrolyte membrane shows a set of merits including a high room-temperature ionic conductivity of 1.77 × 10−4 S cm−1, large Li+ transference number of 0.65, and strong mechanical strength (strength of 29 MPa, elongation of 95%), as well as negligible thermal shrink at 180 °C. The analysis results reveal that the lithium sulfonate-functionalized mesoporous silica nanoparticles in the membrane play a crucial role in the selective transport of Li+ through anion trapping and cation exchange. The pouch full cell is further assembled with a high-voltage NCM cathode and thin lithium anode, which exhibits excellent long-term cycling stability, outstanding rate performance at room temperature, and high safety against abused conditions. The current work provides an innovative strategy for achieving lithium metal batteries with ultrathin all-solid-state electrolytes.  相似文献   

18.
This study illustrates how the microstructure of garnet solid-state electrolytes (SSE) affects the stress-state and dendrite growth. Tantalum-doped lithium lanthanum zirconium oxide (LLZTO, Li6.4La3Zr1.4Ta0.6O12) is synthesized by powder processing and sintering (AS), or with the incorporation of intermediate-stage high-energy milling (M). The M compact displays higher density (91.5% vs 82.5% of theoretical), and per quantitative stereology, lower average grain size (5.4 ± 2.6 vs 21.3 ± 11.1 µm) and lower AFM-derived RMS surface roughness contacting the Li metal (45 vs 161 nm). These differences enable symmetric M cells to electrochemically cycle at constant capacity (0.1 mAh cm−2) with enhanced critical current density (CCD) of 1.4 versus 0.3 mA cm−2. It is demonstrated that LLZTO grain size distribution and internal porosity critically affect electrical short-circuit failure, indicating the importance of electronic properties. Lithium dendrites propagate intergranularly through regions where LLZTO grains are smaller than the bulk average (7.4 ± 3.8 µm for AS in a symmetric cell, 3.1 ± 1.4 µm for M in a half-cell). Metal also accumulates in the otherwise empty pores of the sintered compact present along the dendrite path. Mechanistic modeling indicates that reaction and stress heterogeneities are interrelated, leading to current focusing and preferential plating at grain boundaries.  相似文献   

19.
Aqueous Zn-ion batteries (AZIBs) show great potential in new energy storage devices due to low cost, inherent safety, and environmental friendliness. However, the severe dendrites and side reactions on the anode greatly constrain their practical application. Herein, a novel colloidal electrolyte composed of ZnSO4 and sodium carboxymethyl cellulose (CMC-Na) has been developed for inhibiting dendrite growth on Zn anode. Molecular dynamics (MD) simulation confirms that CMC-Na alters the electric double layer (EDL) structure of Zn anode surface to reduce the content of water and SO42− and inhibit side reactions. More importantly, an organic/inorganic hybrid solid electrolyte interface (SEI) layer is in situ constructed during the cycling, which enables ultrastable Zn plating/stripping (> 2000 h) under high current density (5 mA cm−2, 5 mAh cm−2) and high coulombic efficiency (99.8%) for more than 1000 cycles. Meanwhile, zinc-ion hybrid capacitors (ZIHCs) with the colloidal electrolyte exhibit a favorable capacitance retention of 97% after 15000 cycles at the current density of 2 A g−1. Even at a high current density of 5 A g−1, it still has a capacitance retention of 96% after 30000 cycles. This study presents a novel electrolyte strategy for the formation of ultrastable electrode-electrolyte interfaces in AZIBs.  相似文献   

20.
There is a growing concern about the cyclability and safety, in particular, of the high‐energy density lithium–metal batteries. This concern is even greater for Li–O2 batteries because O2 that is transported from the cathode to the anode compartment, can exacerbate side reactions and dendrite growth of the lithium metal anode. The key to solving this dilemma lays in tailoring the solid electrolyte interphase (SEI) formed on the lithium metal anode in Li–O2 batteries. Here it is reported that a new electrolyte, formed from LiFSI as the salt and a mixture of tetraethylene glycol dimethyl ether and polymeric ionic liquid of P[C5O2NMA,11]FSI as the solvent, can produce a stable electrode (both cathode and anode)|electrolyte interface in Li–O2 batteries. Specifically, this new electrolyte, when in contact with lithium metal anodes, has the ability to produce a uniform SEI with high ionic conductivity for Li+ transport and desired mechanical property for suppression of dendritic lithium growth. Moreover, the electrolyte possesses a high oxidation tolerance that is very beneficial to the oxygen electrochemistry on the cathode of Li–O2 batteries. As a result, enhanced reversibility and cycle life are realized for the resultant Li–O2 batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号