首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Globally, commercialized plum cultivars are mostly diploid Chinese plums (Prunus salicina Lindl.), also known as Japanese plums, and are one of the most abundant and variable fruit tree species. To advance Prunus genomic research, we present a chromosome-scale P. salicina genome assembly, constructed using an integrated strategy that combines Illumina, Oxford Nanopore, and high-throughput chromosome conformation capture (Hi-C) sequencing. The high-quality genome assembly consists of a 318.6-Mb sequence (contig N50 length of 2.3 Mb) with eight pseudo-chromosomes. The expansion of the P. salicina genome is led by recent segmental duplications and a long terminal repeat burst of approximately 0.2 Mya. This resulted in a significant expansion of gene families associated with flavonoid metabolism and plant resistance, which impacted fruit flavor and increased species adaptability. Population structure and domestication history suggest that Chinese plum may have originated from South China and provides a domestication route with accompanying genomic variations. Selection sweep and genetic diversity analysis enabled the identification of several critical genes associated with flowering time, stress tolerance, and flavonoid metabolism, demonstrating the essential roles of related pathways during domestication. Furthermore, we reconstructed and exploited flavonoid–anthocyanin metabolism using multi-omics analysis in Chinese plum and proposed a complete metabolic pathway. Collectively, our results will facilitate further candidate gene discovery for important agronomic traits in Chinese plum and provide insights into future functional genomic studies and DNA-informed breeding.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Sand pear (Pyrus pyrifolia) russet pericarp is an important trait affecting both the quality and stress tolerance of fruits. This trait is controlled by a relative complex genetic process, with some fundamental biological questions such as how many and which genes are involved in the process remaining elusive. In this study, we explored differentially expressed genes between the russet- and green-pericarp offspring from the sand pear (Pyrus pyrifolia) cv. ‘Qingxiang’ × ‘Cuiguan’ F1 group by RNA-seq-based bulked segregant analysis (BSA). A total of 29,100 unigenes were identified and 206 of which showed significant differences in expression level (log2fold values>1) between the two types of pericarp pools. Gene Ontology (GO) analyses detected 123 unigenes in GO terms related to ‘cellular_component’ and ‘biological_process’, suggesting developmental and growth differentiations between the two types. GO categories associated with various aspects of ‘lipid metabolic processes’, ‘transport’, ‘response to stress’, ‘oxidation-reduction process’ and more were enriched with genes with divergent expressions between the two libraries. Detailed examination of a selected set of these categories revealed repressed expressions of candidate genes for suberin, cutin and wax biosynthesis in the russet pericarps.Genes encoding putative cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) that are involved in the lignin biosynthesis were suggested to be candidates for pigmentation of sand pear russet pericarps. Nine differentially expressed genes were analyzed for their expressions using qRT-PCR and the results were consistent with those obtained from Illumina RNA-sequencing. This study provides a comprehensive molecular biology insight into the sand pear pericarp pigmentation and appearance quality formation.  相似文献   

16.
17.
18.
为建立沙葱萤叶甲Gauleruca daurica成虫对蜕皮激素(20-hydroxyecdysone, 20E)响应的转录组数据库,挖掘对20E响应的基因以及代谢和信号通路,并在转录组水平探讨20E调控生殖滞育的分子机制,本研究采用Illumina HiSeqTM4000高通量测序平台对20E及二甲基亚砜(dimethyl sulfoxide, DMSO)处理后的沙葱萤叶甲成虫进行了转录组测序,共获得80 313个unigene;与阴性对照DMSO相比,共获得201个差异表达基因,其中106个上调、95个下调。GO和KEGG富集分析表明,多数差异表达功能基因富集于各种代谢通路,其中核黄素代谢(riboflavin metabolism)、溶酶体(lysosome)和泛酸与乙酰辅酶A合成(pantothenate and CoA biosynthesis)通路显著富集(q<0.05)。结果表明,20E可能通过影响多种代谢通路调控沙葱萤叶甲的生殖滞育。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号