首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several substances such as anabolic androgenic steroids (AAS), peptide hormones like insulin‐like growth factor‐I (IGF‐I), aromatase inhibitors and estrogen antagonists are offered via the Internet, and are assumed without considering the potential deleterious effects that can be caused by their administration. In this study we aimed to determine if nandrolone and stanozolol, two commonly used AAS, could have an effect on Leydig cell tumor proliferation and if their effects could be potentiated by the concomitant use of IGF‐I. Using a rat Leydig tumor cell line, R2C cells, as experimental model we found that nandrolone and stanozolol caused a dose‐dependent induction of aromatase expression and estradiol (E2) production. When used in combination with IGF‐I they were more effective than single molecules in inducing aromatase expression. AAS exhibited estrogenic activity and induced rapid estrogen receptor (ER)‐dependent pathways involving IGF1R, AKT, and ERK1/2 phosphorylation. Inhibitors for these kinases decreased AAS‐dependent aromatase expression. Up‐regulated aromatase levels and related E2 production increased cell proliferation as a consequence of increased cyclin E expression. The observation that ER antagonist ICI182,780 was also able to significantly reduce ASS‐ and AAS + IGF‐induced cell proliferation, confirmed a role for estrogens in AAS‐dependent proliferative effects. Taken together these data clearly indicate that the use of high doses of AAS, as it occurs in doping practice, enhances Leydig cell proliferation, increasing the risk of tumor development. This risk is higher when AAS are used in association with IGF‐I. To our knowledge this is the first report directly associating AAS and testicular cancer. J. Cell. Physiol. 227: 2079–2088, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
As a member of intrinsically unstructured protein family, β‐casein (β‐CN) contains relatively high amount of prolyl residues, adopts noncompact and flexible structure and exhibits chaperone‐like activity in vitro. Like many chaperones, native β‐CN does not contain cysteinyl residues and exhibits strong tendencies for self‐association. The chaperone‐like activities of three recombinant β‐CNs wild type (WT) β‐CN, C4 β‐CN (with cysteinyl residue in position 4) and C208 β‐CN (with cysteinyl residue in position 208), expressed and purified from E. coli, which, consequently, lack the phosphorylated residues, were examined and compared with that of native β‐CN using insulin and alcohol dehydrogenase as target/substrate proteins. The dimers (β‐CND) of C4‐β‐CN and C208 β‐CN were also studied and their chaperone‐like activities were compared with those of their monomeric forms. Lacking phosphorylation, WT β‐CN, C208 β‐CN, C4 β‐CN and C4 β‐CND exhibited significantly lower chaperone‐like activities than native β‐CN. Dimerization of C208 β‐CN with two distal hydrophilic domains considerably improved its chaperone‐like activity in comparison with its monomeric form. The obtained results demonstrate the significant role played by the polar contributions of phosphorylated residues and N‐terminal hydrophilic domain as important functional elements in enhancing the chaperone‐like activity of native β‐CN. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 623–632, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
We investigated the physiological effect of night chilling (CN) on potted seedlings of two tropical tree species, Calophyllum polyanthum and Linociera insignis, in Xishuangbanna, southwest China. Seedlings grown under 8, 25, and 50 % daylight for five months were moved to a 4–6 °C cold storage house for three consecutive nights, and returned to the original shaded sites during the day. CN resulted in strong suppression of photosynthesis and stomatal conductance for L. insignis, and reduced photorespiration rates, carboxylation efficiency, and maximum photochemical efficiency of photosystem 2 (PS2) at dawn and midday for both species. CN increased dawn and midday rates of non-photochemical quenching, and the contents of malondialdehyde and H2O2 for both species. CN also induced inactivation or destruction of PS2 reaction centres. The impacts of CN on tropical seedlings increased with the number of CN. Shading could significantly mitigate the adverse effects of CN for both species. After 3-d-recovery, gas exchange and fluorescence parameters for both species returned to pre-treatment levels in most cases. Thus CN induced mainly stomatal limitation of photosynthesis for L. insignis, and non-stomatal limitation for C. polyanthum. C. polyanthum was more susceptible to CN than L. insignis. Fog, which often occurs in Xishuangbanna, could be beneficial to chilling sensitive tropical seedlings in this area through alleviating photoinhibition or photodamage by reducing sunlight.  相似文献   

4.
Anthropogenic activities have resulted in cyanide (CN) contamination of both soil and water in many areas of the globe. While plants possess a detoxification pathway that serves to degrade endogenously generated CN, this system is readily overwhelmed, limiting the use of plants in bioremediation. Genetic engineering of additional CN degradation pathways in plants is one potential strategy to increase their tolerance to CN. Here we show that heterologous expression of microbial nitrilase enzymes targeted to the mitochondria increases CN tolerance in Arabidopsis. Root length in seedlings expressing either a CN dihydratase from Bacillus pumilis or a CN hydratase from Neurospora crassa was increased by 45% relative in wild‐type plants in the presence of 50 μm KCN. We also demonstrate that in contrast to its strong inhibitory effects on seedling establishment, seed germination of the Col‐0 ecotype of Arabidopsis is unaffected by CN.  相似文献   

5.
 Interactions of charged peptides, such as aspartic acid peptides (Aspptds) and lysine peptides (Lysptds), with cytochrome c (cyt c) or plastocyanin (PC) have been studied by measuring electron transfer between [Fe(CN)6]4– and cyt c or PC in the presence of these peptides. Aspptds, up to penta-aspartic acid, served as competitive inhibitors of electron transfer from [Fe(CN)6]4– to oxidized cyt c, while Lysptds, up to penta-lysine, promoted electron transfer from [Fe(CN)6]4– to oxidized PC. The electron transfer inhibitory effects of Aspptds are explained as competitive inhibition due to neutralization of the positively charged amino acid residues at the surface of cyt c by electrostatic interactions, whereas the electron transfer promoting effects of Lysptds may be due to formation of PC·Lysptd or Lysptd·[Fe(CN)6]4– complexes subsequently forming an electron transferring complex, PC·Lysptd·[Fe(CN)6]4–, without repulsion of the negative charges. The inhibitory effect of Aspptds and promotional effect of Lysptds became significant as the net charge or concentration of the peptides increased. The promotional effects of Lysptds decreased as the net charge of the PC negative patch was decreased by mutagenesis. Thus, charged peptides may serve as a probe for investigation of the molecular recognition character of proteins. Received: 19 May 1998 / Accepted: 27 July 1998  相似文献   

6.
Summary Cyanide (CN) and dinitrophenol (DNP) rapidly depolarize the cells of oat coleoptiles (Avena sativa L., cultivar Victory) and of pea epicotyls (Pisum sativum L., cultivar Alaska); the effect is reversible. This indicates that electrogenesis is metabolic in origin, and, since active transport is blocked in the presence of CN and DNP, perhaps caused by interference with ATP synthesis, that development of cell potential may be associated with active ion transport. Additional evidence for an electrogenic pump is as follows. (1) Cell electropotentials are higher than can be accounted for by ionic diffusion. (2) Inhibition of potential, respiration, andactive ion transport is nearly maximal, but a potential of –40 to –80 mV remains. This is probably a passive diffusion potential since, under these conditions, a fairly close fit to the Goldman constant-field equation is found in oat coleoptile cells.  相似文献   

7.
The N-acetoxy and N-hydroxy derivatives of trans-4-acetylamino-stilbene (AAS) were demonstrated to induce gene mutations at the hgprt locus and to be cytotoxic in V79 cells. These cells deacetylated AAS. Paraoxon inhibited the deacetylation of AAS by more than 99% and reduced the mutagenicicity and cytotoxicity of N-hydroxy-ASS and N-acetoxy-AAS to about one-tenth. Hence, deacetylated metabolites, formed by the target cells, were important for the observed biological effects.Abbreviations AAF 2-acetylaminofluorene - AAS trans-4-acetylaminostilbene - AS trans-4-aminostilbene  相似文献   

8.
Nitric oxide (NO) and reactive oxygen species (ROS) are important regulators involving various processes of plant growth and development. Amaranthus retroflexus L. seeds possess a relative dormancy property that means freshly collected seeds can only germinate over a limited, high temperature range. Here, we show that the relative dormancy of A. retroflexus seeds could be significantly released following treatments with exogenous NO/cyanide (CN) donors such as nitrite, gases evolved from acidified nitrite, sodium nitroprusside (SNP), potassium ferricyanide (Fe(III)CN) and gases evolved from SNP or Fe(III)CN solutions, as well as exogenously supplied ROS, hydrogen peroxide (H2O2). However, the effectiveness varied among these chemicals. Gases evolved from acidified nitrite displayed maximum effect while H2O2 had minimum effect. We also show that the effects of these compounds could be significantly inhibited by NO specific scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), indicating that NO signaling pathway might play a central role in the dormancy release and germination of A. retroflexus seeds, while both ROS and CN might act through NO-dependent signaling cascades.  相似文献   

9.
Background The increasing prevalence of human immunodeficiency virus type 1 (HIV‐1) subtype C infection worldwide calls for efforts to develop a relevant animal model for evaluating AIDS candidate vaccines. In China, the prevalent HIV strains comprise a circulating recombinant form, BC (CRF07_BC), in which the envelope belongs to subtype C. Methods To evaluate potential AIDS vaccines targeting Chinese viral strains in non‐human primate models, we constructed a simian/human immunodeficiency virus (SHIV) carrying most of the envelope sequence of a primary HIV‐1 clade C strain isolated from an HIV‐positive intravenous drug user from YunNan province in China. Furthermore, to determine whether in vivo adaptation would enhance the infectivity of SHIV‐CN97001, the parental infectious strain was serially passaged through eight Chinese rhesus macaques. Results Infection of six Chinese rhesus macaques with SHIV‐CN97001 resulted in a low level of viremia and no significant alteration in CD4+ T‐lymphocyte counts. However, the hallmarks of SHIV infectivity developed gradually, as shown by the increasingly elevated peak viremia with each passage. Conclusion These findings establish that the R5‐tropic SHIV‐CN97001/Chinese rhesus macaque model should be very useful for the evaluation of HIV‐1 subtype C vaccines in China.  相似文献   

10.
The effect of water on the low-frequency (102-105 Hz) complex permittivitv of native, sold-state collagen has been investigated experimentally. Measurements at ambient temperature show that dry collagen exhibits essentially no frequency or temperature dependence. As water is absorbed, both dielectric constant and loss factor increase simultaneously and rise sharply upward at a hydration level which may be associated with the completion of the primary absorption layer as determined from independent water absorption studies. The behaviour is qualitatively identical to that observed for other proteins and related materials. Temperature-dependent measurements made under vacuum conditions in the range ?196°C to +100°C are characteristic of the dielectric properties of the water in the sample. Dehydration produced by successive temperature recycling to the maximum temperature effectively eliminates any temperature or frequency dependence. A maximum in the temperature-dependent curves is found at about +40°C and is explained as the superposition of two processes: (1) the transition of water molecules from bound to free states, and (2) the difffusion of water molecules out of the system. The dielectric constant of dry collagen, after desorption at ambient temperature, is about 4.5. Desorption at elevated temperatures reduced the room temperature value to about 2.3 and the liquid nitrogen temperature value to a number indistinguishable from the optical value of n2 = 2.16.  相似文献   

11.
In this study, we investigated whether nitric oxide (NO) modulated injury-induced neuropeptide Y (NPY) releasing and c-Fos expression in the cuneate nucleus (CN) after median nerve transection (MNT). We first examined the temporal changes of neuronal nitric oxide synthase (nNOS) expression in the dorsal root ganglion (DRG) and CN after MNT. Following MNT, the amounts of nNOS-like immunoreactive (nNOS-LI) neurons in the DRG and CN significantly increased as compared with those of the sham-operated rats. Furthermore, 4 weeks after MNT, the increases of nNOS-LI neurons in the DRG and CN were attenuated by pre-emptive lidocaine treatment in a dose-dependent manner. Finally, 4 weeks after MNT, pre-stimulation administration of L-NAME (N ω-Nitro-l-arginine methyl ester) or 7-NI (7-nitroindazole) suppressed the amount of NPY release from the stimulated terminals and thus attenuated c-Fos expression in the CN. Our data implied that NO would modulate neuronal activity in the DRG and CN both after MNT.  相似文献   

12.
Abstract

We have applied the image approximation to the reaction field as suggested by H.L. Friedman [Mol. Phys., 29, 1533 (1975)] by investigating appropriate cavity sizes and system parameters for use in molecular simulations. The energy of and the structure around a central simple point charge (SPC) water molecule in a dielectric cavity was found to be in good agreement with the properties of a liquid sample. To confine the water molecules within the cavity, we introduced a short-range repulsion between a real charge and its image as the Lennard-Jones repulsive potential between oxygen atoms of the SPC potential. For a system of 65 water molecules a cavity radius of 10.45 Å is appropriate; this radius is altered to 12.00 Å for a cavity surrounding 113 molecules. The effect of the boundary is restricted to the outer-most water layer which is in contact with the dielectric continuum.  相似文献   

13.
1. We studied the effects of fish water and temperature on mechanisms of competitive exclusion among two Daphnia species in flow‐through microcosms. The large‐bodied D. pulicaria outcompeted the medium sized D. galeata × hyalina in fish water, but not in the control treatment. Daphnia galeata × hyalina was competitively displaced 36 days earlier at 18 °C than at 12 °C. 2. It is likely that the high phosphorus content of fish water increased the nutritional value of detrital seston particles by stimulating bacterial growth. Daphnia pulicaria was presumably better able to use these as food and hence showed a more rapid somatic growth than its competitor. This led to very high density of D. pulicaria in fish water, but not in the controls. The elevated D. pulicaria density coincided with high mortality and reduced fecundity in D. galeata × hyalina, resulting in competitive displacement of the hybrid. 3. It is clear that the daphnids competed for a limiting resource, as grazing caused a strong decrease in their seston food concentration. However, interference may also have played a role, as earlier studies have shown larger Daphnia species to be dominant in this respect. The high density of large‐bodied D. pulicaria in fish water may have had an allelopathic effect on the hybrid. Our data are inconclusive with respect to whether the reached seston concentration was below the threshold resource level (R*) of the hybrid, where population growth rate and mortality exactly balance, as it would be set in the absence of interference, or whether interference actually raised the hybrid's R* to a value above this equilibrium particle concentration. 4. Our results do clearly show that fish‐released compounds mediated competitive exclusion among zooplankton species and that such displacement occurred at a greatly enhanced rate at an elevated temperature. Fish may thus not only structure zooplankton communities directly through size‐selective predation, but also indirectly through the compounds they release.  相似文献   

14.
Resistance to antimalarials targeting the folate pathway is widespread. GTP‐cyclohydrolase (gch1), the first enzyme in this pathway, exhibits extensive copy number variation (CN) in parasite isolates from areas with a history of longstanding antifolate use. Increased CN of gch1 is associated with a greater number of point mutations in enzymes targeted by the antifolates, pyrimethamine and sulphadoxine. While these observations suggest that increases in gch1 CN are an adaptation to drug pressure, changes in CN have not been experimentally demonstrated to directly alter drug susceptibility. To determine if changes in gch1 expression alone modify pyrimethamine sensitivity, we manipulated gch1 CN in several parasite lines to test the effect on drug sensitivity. We report that increases in gch1 CN alter pyrimethamine resistance in most parasites lines. However we find evidence of a detrimental effect of very high levels of gch1 overexpression in parasite lines with high endogenous levels of gch1 expression, revealing the importance of maintaining balance in the folate pathway and implicating changes in gch1 expression in preserving proper metabolic flux. This work expands our understanding of parasite adaptation to drug pressure and provides a possible mechanism for how specific mutations become fixed within parasite populations.  相似文献   

15.
Glycosaminoglycans (GAG) and proteoglycans, which are components of the extracellular bone matrix, are also localized in and at the membrane of osteoblasts and in the pericellular matrix. Due to their interaction with several growth factors, water and cations these molecules play an important role in regulating proliferation and differentiation of osteoblasts and bone development. The aim of this study was to assess in vitro the effects of two chemically sulfated hyaluronan (HyaS) derivatives on the proliferation of rat calvarial osteoblasts and to compare with those of native hyaluronan (Hya) and natural sulfated GAG such as chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), dermatan sulfate (DS) and heparan sulfate (HS). Moderately and highly sulfated HyaS derivatives caused a time-dependent reduction of osteoblast proliferation. The anti-proliferative effect of HyaS was accompanied by a cell cycle arrest in the G1 phase, but was not associated with cell death. Whereas non-sulfated high molecular weight (HMW)- and low molecular weight (LMW)-Hya as well as C4S, C6S, DS and HS showed no effect on the cell proliferation.  相似文献   

16.
Chemical modifications of substrate peptides are often necessary to monitor the hydrolysis of small bioactive peptides. We developed an electrospray ionization mass spectrometry (ESI–MS) assay for studying substrate distributions in reaction mixtures and determined steady-state kinetic parameters, the Michaelis–Menten constant (Km), and catalytic turnover rate (Vmax/[E]t) for three metallodipeptidases: two carnosinases (CN1 and CN2) from human and Dug1p from yeast. The turnover rate (Vmax/[E]t) of CN1 and CN2 determined at pH 8.0 (112.3 and 19.5 s−1, respectively) suggested that CN1 is approximately 6-fold more efficient. The turnover rate of Dug1p for Cys-Gly dipeptide at pH 8.0 was found to be slightly lower (73.8 s−1). In addition, we determined kinetic parameters of CN2 at pH 9.2 and found that the turnover rate was increased by 4-fold with no significant change in the Km. Kinetic parameters obtained by the ESI–MS method are consistent with results of a reverse-phase high-performance liquid chromatography (RP–HPLC)-based assay. Furthermore, we used tandem MS (MS/MS) analyses to characterize carnosine and measured its levels in CHO cell lines in a time-dependent manner. The ESI–MS method developed here obviates the need for substrate modification and provides a less laborious, accurate, and rapid assay for studying kinetic properties of dipeptidases in vitro as well as in vivo.  相似文献   

17.
A technique for simultaneous inoculation of cucumber cotyledons with Colletotrichum orbiculare race 1 and Cladosporium cucumerinum has been developed. The procedure permitted both resistant and susceptible plants to be recovered. Seedlings were grown at 20°C and inoculated 24 h after emergence with Colletotrichum orbiculare (200 spores in 2 μ1 of water) and Cladosporium cucumerinum (1000 spores in 5 μ1 of water) followed by 48 h of incubation in the dark at 20°C and 100% r.h., and 48 h in a 20°C lighted growth chamber. Seedlings were then moved to a growth chamber at 21°C at night and at 26°C during the day for 4 days and plants were rated as resistant or susceptible 8 days after inoculation. No interference in the expression of resistance or susceptibility of cultivars to either pathogen was detected in simultaneous inoculations.  相似文献   

18.
This study compared parr from three strains of rainbow trout Oncorhynchus mykiss to examine intraspecific variation in metabolic traits, hypoxia tolerance and upper thermal tolerance in this species. At the strain level, variation in absolute aerobic scope (AAS), critical oxygen level (O2crit), incipient lethal oxygen saturation (ILOS) and critical thermal maximum (CTmax) generally exhibited consistent differences among the strains, suggesting the possibility of functional associations among these traits. This possibility was further supported at the individual level by a positive correlation between ILOS and O2crit and a negative correlation between O2crit and AAS. These results indicate that intraspecific differences in hypoxia tolerance among strains of O. mykiss may be primarily determined by differences in the ability to maintain oxygen uptake in hypoxia and that variation in aerobic scope in normoxia probably plays a role in determining the ability of these fish to sustain metabolism aerobically as water oxygen saturation is reduced.  相似文献   

19.
Summary The activities of single afferent fibers were recorded in the trunk lateral line nerve of the cichlid fishSarotherodon niloticus L. Using both electrophysiological recordings and neuroanatomical tracing techniques, the number, arrangement, and innervation of superficial (SNs) and canal (CNs) neuromasts were determined. Both, SNs and CNs, are innervated by several afferent fibers of different diameters and efferent fibers. The CNs and SNs are neuronally separated: afferent fibers which innervate both CNs and SNs were not found. Whereas the single CN is innervated by a separate set of afferent fibers, fibers innervating the SNs within rows often branched to reach all or several SNs. The SNs within a row were thus considered to form a functional unit. With the exception of SNs on the tail fin, functional units of neuromasts were in general topographically restricted to single scales.The majority of lateral line units had resting activity. On the basis of the time interval distribution of the resting activity, 4 types of units were classified: these were labelled irregular (type I), regular (type II), bimodal (type III) and silent (type IV). Type I was the most common type of resting activity (obtained in 47.8% of the recorded units). Units with this resting activity type were identified as afferents innervating either SNs or CNs. Units with resting activity of type II represented mostly afferents of CNs if their mean activity was high (around 40 imp/s). If the mean activity of this type was below 20 imp/s the units were unresponsive to local water movements and at least some were identified as efferent fibers. Resting activity of type III was found only in units originating from CNs. Only 4% of the units were silent (type IV). These units were often identified as injured neuromasts. Units originating from CNs show higher mean resting activity than those from SNs. For both SN and CN units, the mean discharge rate of the resting activity correlated with the sensitivity to stimulation for sinusoidal water movements.During stimulation of the neuromasts by sinusoidal water movements of small amplitude and different frequencies, the response characteristics of SN and CN units were determined by linear frequency analysis under steady state conditions. Most units responded linearly to small stimulus amplitudes. In this amplitude range the units' resting activity was modulated according to the stimulus frequency. Small stimulus amplitudes proportionally changed the amount of modulation but did not alter the phase of the response. CN and SN units that responded linearly produce differing frequency responses. Whereas CNs were most sensitive at frequencies of up to 200 Hz (center frequencies between 100 and 200 Hz), the center frequencies of SNs were distributed between 10 and 70 Hz with a maximum number at about 30 Hz. Bode plots for many CN and SN units indicated that the neuromasts were sensitive to the acceleration component of the water movement.The functional significance of the differences between the two types of lateral line neuromasts (SNs and CNs) were discussed.Abbreviations SN superficial neuromast - CN canal neuromast  相似文献   

20.
Two series of cationic porphyrins meso-(3N-methylpyridinium)phenylporphyrin (3P1, 3P2c, 3P2t, 3P3 and 3P4) and meso-(4N-methylpyridinium)phenylporphyrin (4P1, 4P2c, 4P2t, 4P3 and 4P4) were studied to obtain a comprehensive understanding of factors that influence the binding of cationic porphyrins to liposomes and mitochondria, as well as their photodynamic efficiencies in erythrocytes. Binding and photodynamic efficiency were found to be inversely proportional to the number of positively charged groups and directly proportional to n-octanol/water partition coefficients (log POW), except for the cis molecules 3P2c and 4P2c. In the cis molecules, binding and photodynamic efficiency were much higher than expected, indicating that specific interactions not accounted by log POW enhance photodynamic efficiency. The effect of mitochondrial transmembrane electrochemical potentials on cationic porphyrin binding constants was estimated to be as large as 15%, and may be useful to selectively target this organelle when promoting photodynamic therapy to induce apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号