首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

2.
Sodium-ion batteries (SIBs), based on hard carbon anodes and Na+-intercalation compound cathodes, have gained significant attention. Nonetheless, hard carbon anodes involve the storage of Na+ at a low potential, typically below 0.1 V (vs Na/Na+), which increases the risk of dendritic Na growth on the anode surface during overcharging. Herein, a safe organic/inorganic composite anode containing tetrasodium 3,4,9,10-perylenetetracarboxylate (Na4PTC) and Metallic bismuth (Bi) with a weight ratio of 7:2, which exhibits an average potential of 0.7 V (vs Na+/Na) and a capacity of 150 mAh g−1 is proposed. The electrode reaction involves a reversible coordination reaction within the organic host and alloying reactions within the metallic Bi component. Importantly, the organic component efficiently buffers the volume changes in Bi during the alloying reaction, while the metallic Bi enhances the electronic conductivity of the organic material. As a result, this composite anode shows high cycle stability and rate performance, even under high mass loadings ranging from 10 to 50 mg cm−2. Furthermore, it is demonstrated that the Na-ion full cell, consisting of the composite anode and the Na3V2O2(PO4)2F cathode, exhibits minimal capacity degradation over 100 cycles while maintaining a high areal capacity of 1.1 mA cm−2.  相似文献   

3.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

4.
Sodium‐ion batteries (NIBs) have attracted more and more attention as economic alternatives for lithium‐ion batteries (LIBs). Sodium super ionic conductor (NASICON) structure materials, known for high conductivity and chemical diffusion coefficient of Na+ (≈10?14 cm2 s?1), are promising electrode materials for NIBs. However, NASICON structure materials often suffer from low electrical conductivity (<10?4 S cm?1), which hinders their electrochemical performance. Here high performance sodium storage performance in Na3V2(PO4)3 (NVP) is realized by optimizing nanostructure and rational surface engineering. A N, B codoped carbon coated three‐dimensional (3D) flower‐like Na3V2(PO4)3 composite (NVP@C‐BN) is designed to enable fast ions/electrons transport, high‐surface controlled energy storage, long‐term structural integrity, and high‐rate cycling. The conductive 3D interconnected porous structure of NVP@C‐BN greatly releases mechanical stress from Na+ extraction/insertion. In addition, extrinsic defects and active sites introduced by the codoping heteroatoms (N, B) both enhance Na+ and e? diffusion. The NVP@C‐BN displays excellent electrochemical performance as the cathode, delivering reversible capacity of 70% theoretical capacity at 100 C after 2000 cycles. When used as anode, the NVP@C‐BN also shows super long cycle life (38 mA h g?1 at 20 C after 5000 cycles). The design provides a novel approach to open up possibilities for designing high‐power NIBs.  相似文献   

5.
The fabrication of ultrasmall and high‐content SnO2 nanocrystals anchored on doped graphene can endow SnO2 with superior electrochemical properties. Herein, an effective strategy, involving molecular engineering of a layer‐by‐layer assembly technique, is proposed to homogeneously anchor SnO2 nanocrystals on nitrogen/sulfur codoped graphene (NSGS), which serves as an advanced anode material in lithium/sodium‐ion batteries (LIBs/SIBs). Benefiting from novel design and specific structure, the optimized NSGS for LIBs displays high initial capacity (2123.9 mAh g?1 at 0.1 A g?1), long‐term cycling performance (only 0.8% loss after 500 cycles), and good rate capability (477.4 mAh g?1 at 5 A g?1). In addition, the optimized NSGS for SIBs also delivers high initial capacity (791.7 mAh g?1 at 0.1 A g?1) and high reversible capacity (180.2 mAh g?1 after 500 cycles at 0.5 A g?1). Meanwhile, based on the detailed analysis of phase transition and electrochemical reaction kinetics, the reaction mechanisms of NSGS in LIBs and SIBs as well as the distinction in LIBs/SIBs are clearly articulated. Notably, to further explore the practical application, Li/Na+ full cells are also assembled by coupling the optimized NSGS anode with LiCoO2 and Na3V2(PO4)3/C cathodes, respectively.  相似文献   

6.
Sodium superionic conductor (NASICON) cathodes are attractive for Na‐ion battery applications as they exhibit both high structural stability and high sodium ion mobility. Herein, a comprehensive study is presented on the structural and electrochemical properties of the NASICON‐Na3+yV2?yMny(PO4)3 (0 ≤ y ≤ 1) series. A phase miscibility gap is observed at y = 0.5, defining two solid solution domains with low and high Mn contents. Although, members of each of these domains Na3.25V1.75Mn0.25(PO4)3 and Na3.75V1.25Mn0.75(PO4)3 reversibly exchange sodium ions with high structural integrity, the activity of the Mn3+/Mn2+ redox couple is found to be absent and present in the former and latter candidate, respectively. Galvanostatic cycling and rate studies reveal higher capacity and rate capability for the Na3.75V1.25Mn0.75(PO4)3 cathode (100 and 89 mA h g?1 at 1C and 5C rate, respectively) in the Na3+yV2?yMny(PO4)3 series. Such a remarkable performance is attributed to optimum bottleneck size (≈5 Å2) and modulated V‐ and Mn‐redox centers as deduced from Rietveld analysis and DFT calculations, respectively. This study shows how important it is to manipulate electronic and crystal structures to achieve high‐performance NASICON cathodes.  相似文献   

7.
Developing multielectron reaction electrode materials is essential for achieving high specific capacity and high energy density in secondary batteries; however, it remains a great challenge. Herein, Na3MnTi(PO4)3/C hollow microspheres with an open and stable NASICON framework are synthesized by a spray‐drying‐assisted process. When applied as a cathode material for sodium‐ion batteries, the resultant Na3MnTi(PO4)3/C microspheres demonstrate fully reversible three‐electron redox reactions, corresponding to the Ti3+/4+ (≈2.1 V), Mn2+/3+ (≈3.5 V), and Mn3+/4+ (≈4.0 V vs Na+/Na) redox couples. In situ X‐ray diffraction results reveals that both solid‐solution and two‐phase electrochemical reactions are involved in the sodiation/desodiation processes. The high specific capacity (160 mAh g?1 at 0.2 C), outstanding cyclability (≈92% capacity retention after 500 cycles at 2 C), and the facile synthesis make the Na3MnTi(PO4)3/C a prospective cathode material for sodium‐ion batteries.  相似文献   

8.
A nitrogen‐doped, carbon‐coated Na3V2(PO4)3 cathode material is synthesized and the formation of doping type of nitrogen‐doped in carbon coating layer is systemically investigated. Three different carbon‐nitrogen species: pyridinic N, pyrrolic N, and quaternary N are identified. The most important finding is that different carbon‐nitrogen species in the carbon layer have different impacts on the improvement of the electrochemical properties of Na3V2(PO4)3. Pyridinic N and pyrrolic N significantly increase the electronic conductivity and create numerous extrinsic defects and active sites. Quaternary N only increases the electronic conductivity without creating extrinsic defects. Therefore, it is unexpectedly demonstrated that the Na3V2(PO4)3/C+N, in which with minimize content of quaternary N or exist most extrinsic defects, exhibits the best electrochemical performance, particularly the rate performance and cycling stability. For example, when the discharging rate increased from 0.2 C to 5 C, its capacity of 101.9 mAh g?1 decays to 84.3 mAh g?1 and an amazing capacity retention of 83% is achieved. Moreover, even at higher current density of 5 C, an excellent capacity retention of 93% is maintained even after 100 cycles.  相似文献   

9.
Na3V2(PO4)3 has attracted great attention due to its high energy density and stable structure. However, in order to boost its application, the discharge potential of 3.3–3.4 V (vs Na+/Na) still needs to be improved and substitution of vanadium with other lower cost and earth‐abundant active redox elements is imperative. Therefore, the Na superionic conductor (NASICON)‐structured Na4MnV(PO4)3 seems to be more attractive due to its lower toxicity and higher voltage platform resulting from the partial substitution of V with Mn. However, Na4MnV(PO4)3 still suffers from poor electronic conductivity, leading to unsatisfactory capacity delivering and poor high‐rate capability. In this work, a graphene aerogel–supported in situ carbon–coated Na4MnV(PO4)3 material is synthesized through a feasible solution‐route method. The elaborately designed Na4MnV(PO4)3 can reach ≈380 Wh kg?1 at 0.5 C (1 C = 110 mAh g?1) and realize superior high‐rate capability evenat 50 C (60.1 mAh g?1) with a long cycle‐life of 4000 cycles at 20 C. This impressive progress should be ascribed to the multifunctional 3D carbon framework and the distinctive structure of trigonal Na4MnV(PO4)3, which are deeply investigated by both experiments and calculations.  相似文献   

10.
Energy‐storage technology is moving beyond lithium batteries to sodium as a result of its high abundance and low cost. However, this sensible transition requires the discovery of high‐rate and long‐lifespan anode materials, which remains a significant challenge. Here, the facile synthesis of an amorphous Sn2P2O7/reduced graphene oxide nanocomposite and its sodium storage performance between 0.01 and 3.0 V are reported for the first time. This hybrid electrode delivers a high specific capacity of 480 mA h g?1 at a current density of 50 mA g?1 and superior rate performance of 250 and 165 mA h g?1 at 2 and 10 A g?1, respectively. Strikingly, this anode can sustain 15 000 cycles while retaining over 70% of the initial capacity. Quantitative kinetic analysis reveals that the sodium storage is governed by pseudocapacitance, particularly at high current rates. A full cell with sodium super ionic conductor (NASICON)‐structured Na3V2(PO4)2F3 and Na3V2(PO4)3 as cathodes exhibits a high energy density of over 140 W h kg?1 and a power density of nearly 9000 W kg?1 as well as stability over 1000 cycles. This exceptional performance suggests that the present system is a promising power source for promoting the substantial use of low‐cost energy storage systems.  相似文献   

11.
Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS2 is a promising 2D material for SIBs, it suffers from deformation of its layered structure during repeated intercalation of Na+, resulting in undesirable electrochemical behaviors. In this study, vertically oriented MoS2 on nitrogenous reduced graphene oxide sheets (VO‐MoS2/N‐RGO) is presented with designed spatial geometries, including sheet density and height, which can deliver a remarkably high reversible capacity of 255 mA h g?1 at a current density of 0.2 A g?1 and 245 mA h g?1 at a current density of 1 A g?1, with a total fluctuation of 5.35% over 1300 cycles. These results are superior to those obtained with well‐developed hard carbon structures. Furthermore, a SIB full cell composed of the optimized VO‐MoS2/N‐RGO anode and a Na2V3(PO4)3 cathode reaches a specific capacity of 262 mA h g?1 (based on the anode mass) during 50 cycles, with an operated voltage range of 2.4 V, demonstrating the potentially rewarding SIB performance, which is useful for further battery development.  相似文献   

12.
Sodium ion batteries (SIBs) have drawn significant attention owing to their low cost and inherent safety. However, the absence of suitable anode materials with high rate capability and long cycling stability is the major challenge for the practical application of SIBs. Herein, an efficient anode material consisting of uniform hollow iron sulfide polyhedrons with cobalt doping and graphene wrapping (named as CoFeS@rGO) is developed for high‐rate and long‐life SIBs. The graphene‐encapsulated hollow composite assures fast and continuous electron transportation, high Na+ ion accessibility, and strong structural integrity, showing an extremely small volume expansion of only 14.9% upon sodiation and negligible volume contraction during the desodiation. The CoFeS@rGO electrode exhibits high specific capacity (661.9 mAh g?1 at 100 mA g?1), excellent rate capability (449.4 mAh g?1 at 5000 mA g?1), and long cycle life (84.8% capacity retention after 1500 cycles at 1000 mA g?1). In situ X‐ray diffraction and selected‐area electron diffraction patterns show that this novel CoFeS@rGO electrode is based on a reversible conversion reaction. More importantly, when coupled with a Na3V2(PO4)3/C cathode, the sodium ion full battery delivers a superexcellent rate capability (496.8 mAh g?1 at 2000 mA g?1) and ≈96.5% capacity retention over 200 cycles at 500 mA g?1 in the 1.0–3.5 V window. This work indicates that the rationally designed anode material is highly applicable for the next generation SIBs with high‐rate capability and long‐term cyclability.  相似文献   

13.
Sodium (Na) super ion conductor structured Na3V2(PO4)3 (NVP) is extensively explored as cathode material for sodium‐ion batteries (SIBs) due to its large interstitial channels for Na+ migration. The synthesis of 3D graphene‐like structure coated on NVP nanoflakes arrays via a one‐pot, solid‐state reaction in molten hydrocarbon is reported. The NVP nanoflakes are uniformly coated by the in situ generated 3D graphene‐like layers with the thickness of 3 nm. As a cathode material, graphene covered NVP nanoflakes exhibit excellent electrochemical performances, including close to theoretical reversible capacity (115.2 mA h g?1 at 1 C), superior rate capability (75.9 mA h g?1 at 200 C), and excellent cyclic stability (62.5% of capacity retention over 30000 cycles at 50 C). Furthermore, the 3D graphene‐like cages after removing NVP also serve as a good anode material and deliver a specific capacity of 242.5 mA h g?1 at 0.1 A g?1. The full SIB using these two cathode and anode materials delivers a high specific capacity (109.2 mA h g?1 at 0.1 A g?1) and good cycling stability (77.1% capacity retention over 200 cycles at 0.1 A g?1).  相似文献   

14.
Sodium‐ion battery has captured much attention due to the abundant sodium resources and potentially low cost. However, it suffers from poor cycling stability and low diffusion coefficient, which seriously limit its widespread application. Here, K3V2(PO4)3/C bundled nanowires are fabricated usinga facile organic acid‐assisted method. With a highly stable framework, nanoporous structure, and conductive carbon coating, the K3V2(PO4)3/C bundled nanowires manifest excellent electrochemical performances in sodium‐ion battery. A stable capacity of 119 mAh g?1 can be achieved at 100 mA g?1. Even at a high current density of 2000 mA g?1, 96.0% of the capacity can be retained after 2000 charge–discharge cycles. Comparing with K3V2(PO4)3/C blocks, the K3V2(PO4)3/C bundled nanowires show significantly improved cycling stability. This work provides a facile and effective approach to enhance the electrochemical performance of sodium‐ion batteries.  相似文献   

15.
Developing rechargeable lithium ion batteries with fast charge/discharge rate, high capacity and power, long lifespan, and broad temperature adaptability is still a significant challenge. In order to realize the fast and efficient transport of ions and electrons during the charging/discharging process, a 3D hierarchical carbon‐decorated Li3V2(PO4)3 is designed and synthesized with a nanoscale amorphous carbon coating and a microscale carbon network. The Brunauer–Emmett–Teller (BET) surface area is 65.4 m2 g?1 and the porosity allows for easy access of the electrolyte to the active material. A specific capacity of 121 mAh g?1 (91% of the theoretical capacity) can be obtained at a rate up to 30 C. When cycled at a rate of 20 C, the capacity retention is 77% after 4000 cycles, corresponding to a capacity fading of 0.0065% per cycle. More importantly, the composite cathode shows excellent temperature adaptability. The specific discharge capacities can reach 130 mAh g?1 at 20 C and 60 °C, and 106 mAh g?1 at 5 C and –20 °C. The rate performance and broad temperature adaptability demonstrate that this hierarchical carbon‐decorated Li3V2(PO4)3 is one of the most attractive cathodes for practical applications.  相似文献   

16.
Solid‐state sodium batteries (SSSBs) are promising electrochemical energy storage devices due to their high energy density, high safety, and abundant resource of sodium. However, low conductivity of solid electrolyte as well as high interfacial resistance between electrolyte and electrodes are two main challenges for practical application. To address these issues, pure phase Na3Zr2Si2PO12 (NZSP) materials with Ca2+ substitution for Zr4+ are synthesized by a sol‐gel method. It shows a high ionic conductivity of more than 10?3 S cm?1 at 25 °C. Moreover, a robust SSSB is developed by integrating sodium metal anodes into NZSP‐type monolithic architecture, forming a 3D electronic and ionic conducting network. The interfacial resistance is remarkably reduced and the monolithic symmetric cell displays stable sodium platting/striping cycles with low polarization for over 600 h. Furthermore, by combining sodium metal anode with Na3V2(PO4)3 cathode, an SSSB is demonstrated with high rate capability and excellent cyclability. After 450 cycles, the capacity of the cell is still kept at 94.9 mAh g?1 at 1 C. This unique design of monolithic electrolyte architecture provides a promising strategy toward realizing high‐performance SSSBs.  相似文献   

17.
Herein, P′2‐type Na0.67[Ni0.1Fe0.1Mn0.8]O2 is introduced as a promising new cathode material for sodium‐ion batteries (SIBs) that exhibits remarkable structural stability during repetitive Na+ de/intercalation. The O? Ni? O? Mn? O? Fe? O bond in the octahedra of transition‐metal layers is used to suppress the elongation of the Mn? O bond and to improve the electrochemical activity, leading to the highly reversible Na storage mechanism. A high discharge capacity of ≈220 mAh g?1 (≈605 Wh kg?1) is delivered at 0.05 C (13 mAg?1) with a high reversible capacity of ≈140 mAh g?1 at 3 C and excellent capacity retention of 80% over 200 cycles. This performance is associated with the reversible P′2–OP4 phase transition and small volume change upon charge and discharge (≈3%). The nature of the sodium storage mechanism in a full cell paired with a hard carbon anode reveals an unexpectedly high energy density of ≈542 Wh kg?1 at 0.2 C and good capacity retention of ≈81% for 500 cycles at 1 C (260 mAg?1).  相似文献   

18.
Ultrathin few‐layer materials have attracted intensive research attention because of their distinctive and unique properties. Few‐layer GeP (FL‐GP) is potentially interesting for application in electronics and optoelectronics because of its appropriate band gap and good stability under ambient conditions. Nevertheless, it is a challenge to achieve ultrathin few‐layer or single layer GeP from exfoliation of bulk crystals. Here, a lithiation‐assisted chemical exfoliation technique is employed to achieve FL‐GP, in which the interlayer spacing can be efficiently enlarged after a preliminary lithium ion intercalation, allowing the bulk crystal to be readily exfoliated in a following ultrasonication. As a result, ultrathin FL‐GP is obtained. In a demonstration, the FL‐GP/reduced graphene oxide (rGO) demonstrates remarkable sodium storage performance. The FL‐GP with a two‐dimensional structure shortens the ion transport pathways and alleviates the volume variation during sodiation. Meanwhile, the rGO in the composite improves the conductivity of the whole electrode. The as‐prepared FL‐GP/rGO electrode exhibits a high capacity of 504.2 mAh g?1 at 100 mA g?1, remarkable rate performance, and superior cycling stability in the half cells. FL‐GP/rGO//Na3V2(PO4)3 full cells are also assembled and demonstrated satisfactory electrochemical performance, indicating potential application of the as‐prepared anode materials.  相似文献   

19.
Na3V2(PO4)3 (NVP) has excellent electrochemical stability and fast ion diffusion coefficient due to the 3D Na+ ion superionic conductor framework, which make it an attractive cathode material for lithium ion batteries (LIBs). However, the electrochemical performance of NVP needs to be further improved for applications in electric vehicles and hybrid electric vehicles. Here, nanoflake‐assembled hierarchical NVP/C microflowers are synthesized using a facile method. The structure of as‐synthesized materials enhances the electrochemical performance by improving the electron conductivity, increasing electrode–electrolyte contact area, and shortening the diffusion distance. The as‐synthesized material exhibits a high capacity (230 mAh g?1), excellent cycling stability (83.6% of the initial capacity is retained after 5000 cycles), and remarkable rate performance (91 C) in hybrid LIBs. Meanwhile, the hybrid LIBs with the structure of NVP || 1 m LiPF6/EC (ethylene carbonate) + DMC (dimethyl carbonate) || NVP and Li4Ti5O12 || 1 m LiPF6/EC + DMC || NVP are assembled and display capacities of 79 and 73 mAh g?1, respectively. The insertion/extraction mechanism of NVP is systematically investigated, based on in situ X‐ray diffraction. The superior electrochemical performance, the design of hybrid LIBs, and the insertion/extraction mechanism investigation will have profound implications for developing safe and stable, high‐energy, and high‐power LIBs.  相似文献   

20.
Sodium-ion batteries (SIB), as one of the most appealing grid-scale energy storage devices, have to deal with the trade-off between the capacity output and rate performance. Utilizing 3D-printed (3DP) anode materials with hybrid sodium storage mechanism and elevated mass loading is promising yet poorly explored. Herein, the design of a prototype ternary composite is reported, MoS2@Bi/N-doped carbon, as a sodium storage candidate to achieve high reversible capacity (604 mAh g−1 at 0.1 A g−1 with an initial output of 709 mAh g−1) and outstanding rate capability (169.6 mAh g−1 at 15 A g−1), outperforming the state-of-the-art reports. This is realized by delicate structural and interfacial engineering of the composite anode, markedly synergizing the conversion-typed MoS2, alloy-typed Bi, and adsorption-typed N-doped carbon. Theoretical simulations and operando instrumental analysis elaborate the reasons of the boosted electrochemical performance. Encouragingly, a fully 3DP SIB affording an areal mass loading of up to 11.7 mg cm−2 is demonstrated, retaining a capacity of 114 mAh g−1 at 1.0 A g−1. This work would facilitate the design of 3DP SIB devices with the employment of advanced electrodes harnessing hybrid ion storage features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号