首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Endocytosis is an important process by which many signaling receptors reach their intracellular effectors. Accumulating evidence suggests that internalized receptors play critical roles in triggering cellular signaling, including transforming growth factor β (TGFβ) signaling. Despite intensive studies on the TGFβ pathway over the last decades, the necessity of TGFβ receptor endocytosis for downstream TGFβ signaling responses is a subject of debate. In this study, mathematical modeling and synthetic biology approaches are combined to re-evaluate whether TGFβ receptor internalization is indispensable for inducing Smad signaling. It is found that optogenetic systems with plasma membrane-tethered TGFβ receptors can induce fast and sustained Smad2 activation upon light stimulations. Modeling analysis suggests that endocytosis is precluded for the membrane-anchored optogenetic TGFβ receptors. Therefore, this study provides new evidence to support that TGFβ receptor internalization is not required for Smad2 activation.  相似文献   

2.
    
《Trends in cell biology》2015,25(8):440-445
  相似文献   

3.
4.
5.
6.
7.
The landscape of human phosphorylation networks has not been systematically explored, representing vast, unchartered territories within cellular signaling networks. Although a large number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)‐based approaches, assigning the upstream kinases to these residues requires biochemical analysis of kinase‐substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on functional protein microarrays and bioinformatics to experimentally identify substrates for 289 unique kinases, resulting in 3656 high‐quality KSRs. We then generated consensus phosphorylation motifs for each of the kinases and integrated this information, along with information about in vivo phosphorylation sites determined by MS, to construct a high‐resolution map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in 652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA downstream of Btk (Bruton's tyrosine kinase) during B‐cell receptor signaling. Overall, these studies provide global insights into kinase‐mediated signaling pathways and promise to advance our understanding of cellular signaling processes in humans.  相似文献   

8.
    
Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable.  相似文献   

9.
罗若愚  李亦学 《生命科学》2007,19(3):301-305
系统生物学倡导利用系统论的思想和方法,从整体的高度分析、研究生命的复杂特性。这一点与实验生物学仅关注某一个或者某一些生物大分子是迥然不同的。系统生物学既要同时考虑多个层次、多种类型的生物信息,还要考虑时间因素。由于系统特性是由于不同组成部分、不同层次间相互作用而“涌现”出的新性质,因此,如果只是针对组成部分或单一层次的分析并不能真正准确地预测整体或高层次的行为。如何通过研究和整合去发现和理解“涌现”出的新的系统性质,是系统生物学面临的一个根本性的挑战。为了应对这一挑战,系统生物学,特别是计算系统生物学必须建立有效的方法,通过整合系统各个层次的信息,建立可反映该系统目前已知或已可测量的性质的物理、数学模型,并通过这样的模型来研究或预测目前还未知晓的系统性状。可以说:建模是系统生物学的最重要的研究手段之一。目前,生命科学的研究正逐步由对单一现象、单一过程的机械论式的描述型研究转向运用高通量实验技术获取海量生物信息,并在这些生物信息基础上建立物理、数学模型,最终通过建模与实验相接合的研究手段来定量阐述生命现象的本质规律。由于建模方法在系统生物学研究中的重要性,本文将对一些主要的建模类型,如定性建模方法;基于约束的建模方法;基于常微分/偏微分方程的定量建模和基于随机微分方程的定量建模方法等等分别予以简要介绍。  相似文献   

10.
This essay provides an introduction to the terminology, concepts, methods, and challenges of image‐based modeling in biology. Image‐based modeling and simulation aims at using systematic, quantitative image data to build predictive models of biological systems that can be simulated with a computer. This allows one to disentangle molecular mechanisms from effects of shape and geometry. Questions like “what is the functional role of shape” or “how are biological shapes generated and regulated” can be addressed in the framework of image‐based systems biology. The combination of image quantification, model building, and computer simulation is illustrated here using the example of diffusion in the endoplasmic reticulum.  相似文献   

11.
12.
    
Circulating levels of the adipocyte hormone adiponectin are typically reduced in obesity, and this deficiency has been linked to metabolic diseases. It is thus important to understand the mechanisms controlling adiponectin exocytosis. This understanding is hindered by the high complexity of both the available data and the underlying signaling network. To deal with this complexity, we have previously investigated how different intracellular concentrations of Ca2+, cAMP, and ATP affect adiponectin exocytosis, using both patch-clamp recordings and systems biology mathematical modeling. Recent work has shown that adiponectin exocytosis is physiologically triggered via signaling pathways involving adrenergic β3 receptors (β3ARs). Therefore, we developed a mathematical model that also includes adiponectin exocytosis stimulated by extracellular epinephrine or the β3AR agonist CL 316243. Our new model is consistent with all previous patch-clamp data as well as new data (collected from stimulations with a combination of the intracellular mediators and extracellular adrenergic stimuli) and can predict independent validation data. We used this model to perform new in silico experiments where corresponding wet lab experiments would be difficult to perform. We simulated adiponectin exocytosis in single cells in response to the reduction of β3ARs that is observed in adipocytes from animals with obesity-induced diabetes. Finally, we used our model to investigate intracellular dynamics and to predict both cAMP levels and adiponectin release by scaling the model from single-cell to a population of cells—predictions corroborated by experimental data. Our work brings us one step closer to understanding the intricate regulation of adiponectin exocytosis.  相似文献   

13.
14.
    
Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed 'omics' technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A 'system' approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with 'system approaches' in animal sciences, providing exciting opportunities to predict and modulate animal traits.  相似文献   

15.
The availability and utility of genome‐scale metabolic reconstructions have exploded since the first genome‐scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high‐throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis‐driven discovery, (4) interrogation of multi‐species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome‐scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology.  相似文献   

16.
17.
    
Objective: Subcellular localization has been shown to play an important role in determining activity and accumulation of p27 protein during cell cycle progression. The purpose of this study was to examine p27 localization and ubiquitylation in relation to E3 ligase expression during adipocyte hyperplasia. Research Methods and Procedures: This study used the murine 3T3‐L1 preadipocyte model to examine p27 regulation during synchronous cell cycle progression. Cell lysates were isolated over time after hormonal stimulation, fractionated to cytosolic and nuclear compartments, and immunoblotted for relative protein determinations. Results: Data presented in this study show that p27 was present in the cytosol and nucleus in density‐arrested preadipocytes and that abundance in both compartments decreased in a phase‐specific manner as preadipocytes synchronously re‐entered the cell cycle during early phases of adipocyte differentiation. Blocking CRM1‐mediated nuclear export did not prevent degradation, nor did it cause nuclear accumulation of p27, suggesting that distinct mechanisms mediating cytosolic and nuclear p27 degradation were involved. Treating preadipocytes with a potent and specific proteasome inhibitor during hormonal stimulation prevented Skp2 accumulation and p27187 phosphorylation, which are essential events for SCFSkp2 E3 ligase activity and nuclear p27 ubiquitylation during S/G2 phase progression. Proteasome blockade also resulted in the first evidence of cytosolic p27 ubiquitylation during late G1 phase as preadipocytes undergo the transition from quiescence to proliferation. Discussion: These data are consistent with the postulate that p27 is ubiquitylated and targeted for degradation by the 26S proteasome in a phase‐specific manner by distinct ubiquitin E3 ligases localized to the cytosol and nucleus during adipocyte hyperplasia.  相似文献   

18.
Prostaglandin E2 (PGE2) is known to have a key role in the development of colorectal cancer, but previous experiments showed its contrasting (i.e. tumor-promoting or tu mor-suppressive) roles depending on experimental conditions. To elucidate the mechanisms underlying such contrasting roles of PG E2 in tumorigenesis, we investigated all the previous experiments and found a new signal transduction pathway mediated by retinoic acid receptor-related orphan receptor (ROR)α, in which PGE2/PKCα-dependent phosphorylation of RORα attenuates Wnt target gene expression in colon cancer ceils. From mathematical simulations combined with biochemical experimentation, we revealed that RORα induces a biphasic response of Wnt target genes to PGE2 stimulation through a regulatory switch formed by an incoherent feedforward loop, which provides a mechanistic explanation on the contrasting roles of PGE2 observed in previous experiments. More interestingly, we found that RORα constitutes another regulatory switch formed by coupled positive and negative feedback loops, which regulates the hysteretic response of Wnt signaling and eventually converts a proliferative cellular state into an anti-proliferative state in a very delicate way. Our results indicate that RORα is the key regulator at the center of these hidden switches that critically regulate cancer celt proliferation and thereby being a promising anti-cancer therapeutic target.  相似文献   

19.
    
Mathematical modeling has become an increasingly important aspect of biological research. Computer simulations help to improve our understanding of complex systems by testing the validity of proposed mechanisms and generating experimentally testable hypotheses. However, significant overhead is generated by the creation, debugging, and perturbation of these computational models and their parameters, especially for researchers who are unfamiliar with programming or numerical methods. Dynetica 2.0 is a user-friendly dynamic network simulator designed to expedite this process. Models are created and visualized in an easy-to-use graphical interface, which displays all of the species and reactions involved in a graph layout. System inputs and outputs, indicators, and intermediate expressions may be incorporated into the model via the versatile “expression variable” entity. Models can also be modular, allowing for the quick construction of complex systems from simpler components. Dynetica 2.0 supports a number of deterministic and stochastic algorithms for performing time-course simulations. Additionally, Dynetica 2.0 provides built-in tools for performing sensitivity or dose response analysis for a number of different metrics. Its parameter searching tools can optimize specific objectives of the time course or dose response of the system. Systems can be translated from Dynetica 2.0 into MATLAB code or the Systems Biology Markup Language (SBML) format for further analysis or publication. Finally, since it is written in Java, Dynetica 2.0 is platform independent, allowing for easy sharing and collaboration between researchers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号