首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reliability of evolutionary reconstructions based on the fossil record critically depends on our knowledge of the factors affecting the fossilization of soft‐bodied organisms. Despite considerable research effort, these factors are still poorly understood. In order to elucidate the main prerequisites for the preservation of soft‐bodied organisms, we conducted long‐term (1–5 years) taphonomic experiments with the model crustacean Artemia salina buried in five different sediments. The subsequent analysis of the carcasses and sediments revealed that, in our experimental settings, better preservation was associated with the fast deposition of aluminum and silicon on organic tissues. Other elements such as calcium, magnesium, and iron, which can also accumulate quickly on the carcasses, appear to be much less efficient in preventing decay. Next, we asked if the carcasses of uni‐ and multicellular organisms differ in their ability to accumulate aluminum ions on their surface. The experiments with the flagellate Euglena gracilis and the sponge Spongilla lacustris showed that aluminum ions are more readily deposited onto a multicellular body. This was further confirmed by the experiments with uni‐ and multicellular stages of the social ameba Dictyostelium discoideum. The results lead us to speculate that the evolution of cell adhesion molecules, which provide efficient cell–cell and cell–substrate binding, probably can explain the rich fossil record of soft‐bodied animals, the comparatively poor fossil record of nonskeletal unicellular eukaryotes, and the explosive emergence of the Cambrian diversity of soft‐bodied fossils.  相似文献   

2.
Various insects require intracellular bacteria that are restricted to specialized cells (bacteriocytes) and are transmitted vertically via the female ovary, but the transmission mechanisms are obscure. We hypothesized that, in the whitefly Bemisia tabaci, where intact bacteriocytes (and not isolated bacteria) are transferred to oocytes, the transmission mechanism would be evident as cellular and molecular differences between the nymph (pre-adult) and adult bacteriocytes. We demonstrate dramatic remodelling of bacteriocytes at the developmental transition from nymph to adulthood. This transition involves the loss of cell–cell adhesion, high division rates to constant cell size and onset of cell mobility, enabling the bacteriocytes to crawl to the ovaries. These changes are accompanied by cytoskeleton reorganization and changes in gene expression: genes functioning in cell–cell adhesion display reduced expression and genes involved in cell division, cell motility and endocytosis/exocytosis have elevated expression in adult bacteriocytes, relative to nymph bacteriocytes. This study demonstrates, for the first time, how developmentally orchestrated remodelling of gene expression and correlated changes in cell behaviour underpin the capacity of bacteriocytes to mediate the vertical transmission and persistence of the symbiotic bacteria on which the insect host depends.  相似文献   

3.
Failures to produce neutralizing antibodies upon HIV‐1 infection result in part from B‐cell dysfunction due to unspecific B‐cell activation. How HIV‐1 affects antigen‐specific B‐cell functions remains elusive. Using an adoptive transfer mouse model and ex vivo HIV infection of human tonsil tissue, we found that expression of the HIV‐1 pathogenesis factor NEF in CD4 T cells undermines their helper function and impairs cognate B‐cell functions including mounting of efficient specific IgG responses. NEF interfered with T cell help via a specific protein interaction motif that prevents polarized cytokine secretion at the T‐cell–B‐cell immune synapse. This interference reduced B‐cell activation and proliferation and thus disrupted germinal center formation and affinity maturation. These results identify NEF as a key component for HIV‐mediated dysfunction of antigen‐specific B cells. Therapeutic targeting of the identified molecular surface in NEF will facilitate host control of HIV infection.  相似文献   

4.
5‐Fluorouracil (5‐FU) is a widely used chemotherapeutic drug, but the mechanisms underlying 5‐FU efficacy in immunocompetent hosts in vivo remain largely elusive. Through modeling 5‐FU response of murine colon and melanoma tumors, we report that effective reduction of tumor burden by 5‐FU is dependent on anti‐tumor immunity triggered by the activation of cancer‐cell‐intrinsic STING. While the loss of STING does not induce 5‐FU resistance in vitro, effective 5‐FU responsiveness in vivo requires cancer‐cell‐intrinsic cGAS, STING, and subsequent type I interferon (IFN) production, as well as IFN‐sensing by bone‐marrow‐derived cells. In the absence of cancer‐cell‐intrinsic STING, a much higher dose of 5‐FU is needed to reduce tumor burden. 5‐FU treatment leads to increased intratumoral T cells, and T‐cell depletion significantly reduces the efficacy of 5‐FU in vivo. In human colorectal specimens, higher STING expression is associated with better survival and responsiveness to chemotherapy. Our results support a model in which 5‐FU triggers cancer‐cell‐initiated anti‐tumor immunity to reduce tumor burden, and our findings could be harnessed to improve therapeutic effectiveness and toxicity for colon and other cancers.  相似文献   

5.
The immune system plays a major role in the protection against cancer. Identifying and characterizing the pathways mediating this immune surveillance are thus critical for understanding how cancer cells are recognized and eliminated. Aneuploidy is a hallmark of cancer, and we previously found that untransformed cells that had undergone senescence due to highly abnormal karyotypes are eliminated by natural killer (NK) cells in vitro. However, the mechanisms underlying this process remained elusive. Here, using an in vitro NK cell killing system, we show that non‐cell‐autonomous mechanisms in aneuploid cells predominantly mediate their clearance by NK cells. Our data indicate that in untransformed aneuploid cells, NF‐κB signaling upregulation is central to elicit this immune response. Inactivating NF‐κB abolishes NK cell‐mediated clearance of untransformed aneuploid cells. In cancer cell lines, NF‐κB upregulation also correlates with the degree of aneuploidy. However, such upregulation in cancer cells is not sufficient to trigger NK cell‐mediated clearance, suggesting that additional mechanisms might be at play during cancer evolution to counteract NF‐κB‐mediated immunogenicity.  相似文献   

6.
7.
Recent advances in genome‐wide technologies have enabled analyses using small cell numbers of even single cells. However, obtaining tissue epigenomes with cell‐type resolution from large organs and tissues still remains challenging, especially when the available material is limited. Here, we present a ChIL‐based approach for analyzing the diverse cellular dynamics at the tissue level using high‐depth epigenomic data. “ChIL for tissues” allows the analysis of a single tissue section and can reproducibly generate epigenomic profiles from several tissue types, based on the distribution of target epigenomic states, tissue morphology, and number of cells. The proposed method enabled the independent evaluation of changes in cell populations and gene activation in cells from regenerating skeletal muscle tissues, using a statistical model of RNA polymerase II distribution on gene loci. Thus, the integrative analyses performed using ChIL can elucidate in vivo cell‐type dynamics of tissues.  相似文献   

8.
In the present study, we demonstrate the regulatory effects and mechanism of broussonin A and B, diphenylpropane derivatives isolated from Broussonetia kazinoki, on vascular endothelial growth factor‐A (VEGF‐A)–stimulated endothelial cell responses in vitro and microvessel sprouting ex vivo. Treatment with broussonin A or B suppressed VEGF‐A‐stimulated endothelial cell proliferation by regulating the expression of cell cycle–related proteins and the phosphorylation status of retinoblastoma protein. In addition, treatment with broussonin A or B abrogated VEGF‐A‐stimulated angiogenic responses including endothelial cell migration, invasion, tube formation and microvessel formation from rat aortic rings. These anti‐angiogenic activities of broussonin A and B were mediated through inactivation of VEGF‐A‐stimulated downstream signalling pathways, localization of vascular endothelial‐cadherin at cell‐cell contacts, and down‐regulation of integrin β1 and integrin‐liked kinase. Furthermore, treatment with broussonin A or B inhibited proliferation and invasion of non–small cell lung cancer and ovarian cancer cells. Taken together, our findings suggest the pharmacological potential of broussonin A and B in the regulation of angiogenesis, cancer cell growth and progression.  相似文献   

9.
Atherosclerosis is a complex pathological process involving macrophages, endothelial cells and vascular smooth muscle cells that can lead to ischemic heart disease; however, the mechanisms underlying cell‐to‐cell communication in atherosclerosis are poorly understood. In this study, we focused on the role of exosomal miRNAs in crosstalk between macrophages and endothelial cells and explored the rarely studied molecular mechanisms involved. Our in vitro result showed that macrophage‐derived exosomal miR‐4532 significantly disrupted human umbilical vein endothelial cells (HUVECs) function by targeting SP1 and downstream NF‐κB P65 activation. In turn, increased endothelin‐1 (ET‐1), intercellular cell adhesion molecule‐1 (ICAM‐1) and vascular cell adhesion molecule‐1 (VCAM‐1) and decreased endothelial nitric oxide synthase (eNOS) expression in HUVECs increased attraction of macrophages, exacerbating foam cell formation and transfer of exosomal miR‐4532 to HUVECs. MiR‐4532 overexpression significantly promoted endothelial injury and pretreatment with an inhibitor of miR‐4532 or GW4869 (exosome inhibitor) could reverse this injury. In conclusion, our data reveal that exosomes have a critical role in crosstalk between HUVECs and macrophages. Further, exosomal miR‐4532 transferred from macrophages to HUVECs and targeting specificity protein 1 (SP1) may be a novel therapeutic target in patients with atherosclerosis.  相似文献   

10.
Bacteria require a number of systems, including the type VI secretion system (T6SS), for interbacterial competition and pathogenesis. The T6SS is a large nanomachine that can deliver toxins directly across membranes of proximal target cells. Since major reassembly of T6SS is necessary after each secretion event, accurate timing and localization of T6SS assembly can lower the cost of protein translocation. Although critically important, mechanisms underlying spatiotemporal regulation of T6SS assembly remain poorly understood. Here, we used super‐resolution live‐cell imaging to show that while Acinetobacter and Burkholderia thailandensis can assemble T6SS at any site, a significant subset of T6SS assemblies localizes precisely to the site of contact between neighboring bacteria. We identified a class of diverse, previously uncharacterized, periplasmic proteins required for this dynamic localization of T6SS to cell–cell contact (TslA). This precise localization is also dependent on the outer membrane porin OmpA. Our analysis links transmembrane communication to accurate timing and localization of T6SS assembly as well as uncovers a pathway allowing bacterial cells to respond to cell–cell contact during interbacterial competition.  相似文献   

11.
12.
CD4+T cells differentiate into distinct functional effector and inhibitory subsets are facilitated by distinct cytokine cues present at the time of antigen recognition. Maintaining a balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for the control of the immunopathogenesis of liver diseases. Here, by using the mouse model of helminth Schistosoma japonicum (S japonicum) infection, we show that the hepatic mRNA levels of P21‐activated kinase 1 (PAK1), a key regulator of the actin cytoskeleton, adhesion and cell motility, are significantly increased and associated with the development of liver pathology during S japonicum infection. In addition, PAK1‐deficient mice are prone to suppression of Th17 cell responses but increased Treg cells. Furthermore, PAK1 enhances macrophage activation through promoting IRF1 nuclear translocation in an NF‐κB‐dependent pathway, resulting in promoting Th17 cell differentiation through inducing IL‐6 production. These findings highlight the importance of PAK1 in macrophages fate determination and suggest that PAK1/IRF1 axis‐dependent immunomodulation can ameliorate certain T cell–based immune pathologies.  相似文献   

13.
Dopamine (DA) signaling via G protein‐coupled receptors is a multifunctional neurotransmitter and neuroendocrine–immune modulator. The DA nigrostriatal pathway, which controls the motor coordination, progressively degenerates in Parkinson''s disease (PD), a most common neurodegenerative disorder (ND) characterized by a selective, age‐dependent loss of substantia nigra pars compacta (SNpc) neurons, where DA itself is a primary source of oxidative stress and mitochondrial impairment, intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts as a preferential neuroendocrine–immune DA target, in turn, counter‐modulating inflammatory processes. With a major focus on DA intersection within the astrocyte–microglial inflammatory network in PD vulnerability, we herein first summarize the characteristics of DA signaling systems, the propensity of DA neurons to oxidative stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact of gene–environment interactions, then constitute a further level of control regulating midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, DA converges to modulate nuclear factor erythroid 2like 2 (Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/βcatenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and immunomodulation, adding to the already complex “signaling puzzle,” a novel actor in mDAn–glial regulatory machinery. Here, we propose an autoregulatory feedback system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the importance of DA receptor agonists applied to the clinic as immune modifiers.  相似文献   

14.
Branching pattern formation is common in many microbes. Extensive studies have focused on addressing how such patterns emerge from local cell–cell and cell–environment interactions. However, little is known about whether and to what extent these patterns play a physiological role. Here, we consider the colonization of bacteria as an optimization problem to find the colony patterns that maximize colony growth efficiency under different environmental conditions. We demonstrate that Pseudomonas aeruginosa colonies develop branching patterns with characteristics comparable to the prediction of modeling; for example, colonies form thin branches in a nutrient‐poor environment. Hence, the formation of branching patterns represents an optimal strategy for the growth of Pseudomonas aeruginosa colonies. The quantitative relationship between colony patterns and growth conditions enables us to develop a coarse‐grained model to predict diverse colony patterns under more complex conditions, which we validated experimentally. Our results offer new insights into branching pattern formation as a problem‐solving social behavior in microbes and enable fast and accurate predictions of complex spatial patterns in branching colonies.  相似文献   

15.
Interferon‐induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS‐CoV‐2 Spike‐pseudotyped virus and genuine SARS‐CoV‐2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, using gain‐ and loss‐of‐function approaches. Mechanistically, SARS‐CoV‐2 restriction occurred independently of IFITM3 S‐palmitoylation, indicating a restrictive capacity distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the IFITM3 endocytosis‐promoting YxxФ motif converted human IFITM3 into an enhancer of SARS‐CoV‐2 infection, and cell‐to‐cell fusion assays confirmed the ability of endocytic mutants to enhance Spike‐mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which increases plasma membrane fusion versus endosome fusion of SARS‐CoV‐2, attenuated IFITM3 restriction and converted amphipathic helix mutants into infection enhancers. In sum, we uncover new pro‐ and anti‐viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity‐based mechanisms used for endosomal SARS‐CoV‐2 restriction.  相似文献   

16.
17.
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS‐CoV‐2 infection is critical for developing treatments for severe COVID‐19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID‐19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL‐6. Using an in vitro stem cell‐based human pDC model, we further demonstrate that pDCs, while not supporting SARS‐CoV‐2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL‐6, IL‐8, CXCL10) cytokines that protect epithelial cells from de novo SARS‐CoV‐2 infection. Via targeted deletion of virus‐recognition innate immune pathways, we identify TLR7‐MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll‐like receptor (TLR)2 is responsible for the inflammatory IL‐6 response. We further show that SARS‐CoV‐2 engages the receptor neuropilin‐1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL‐6 response, suggesting neuropilin‐1 as potential therapeutic target for stimulation of TLR7‐mediated antiviral protection.  相似文献   

18.
19.
Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell–cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis‐ and trans‐synaptic protein complexes. Here, we present a 2.7 Å cryo‐EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C‐rich, YD‐shell, and ABD domains. A 1.5 Å crystal structure of the C‐rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS‐based rigid‐body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium‐dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis‐dimer is compatible with homomeric trans‐interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis‐ and trans‐synaptic interactions to construct functional neuronal circuits.  相似文献   

20.
Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号