首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tribovoltaic nanogenerator (TVNG) mainly collects energy from sliding motions of two semiconducting materials, but it cannot effectively react to the pressure change in the vertical direction. Here, a piezo-tribovoltaic nanogenerator (P-TVNG) is proposed by integrating piezoelectric and tribovoltaic effects to collect energy from both the sliding motion and the variation of applied pressure. Hence, this P-TVNG can gain extra performance improvement on the top of the original output limit of TVNG. The maximum output power density of P-TVNG is up to 3.61 W m−2, which is 28.9 % higher than the highest record of the TVNG using similar materials. Additionally, the piezo-module can work as a separated sensory component by switching the circuit, which can monitor and analyze various working parameters of TVNG. A series of dynamic characteristics of TVNG during its operation have been identified, including the hysteresis between output current and applied pressure, the influence and incompatibility of interface stress to output performance, and so on. As a multifunction of devices, this P-TVNG system is possible to be applied in semiconductor industry, smart manufacturing, and many other fields. This work improves the performance of the TVNGs while extending its functionality, which broadens the application field of TVNG devices.  相似文献   

2.
Layered double hydroxides (LDHs) are a family of high‐profile layer materials with tunable metal species and interlayer spacing, and herein the LDHs are first investigated as bifunctional electrocatalysts. It is found that trinary LDH containing nickel, cobalt, and iron (NiCoFe‐LDH) shows a reasonable bifunctional performance, while exploiting a preoxidation treatment can significantly enhance both oxygen reduction reaction and oxygen evolution reaction activity. This phenomenon is attributed to the partial conversion of Co2+ to Co3+ state in the preoxidation step, which stimulates the charge transfer to the catalyst surface. The practical application of the optimized material is demonstrated with a small potential hysteresis (800 mV for a reversible current density of 20 mA cm?2) as well as a high stability, exceeding the performances of noble metal catalysts (commercial Pt/C and Ir/C). The combination of the electrochemical metrics and the facile and cost‐effective synthesis endows the trinary LDH as a promising bifunctional catalyst for a variety of applications, such as next‐generation regenerative fuel cells or metal–air batteries.  相似文献   

3.
Binary NiFe layer double hydroxide (LDH) serves as a benchmark non‐noble metal electrocatalyst for the oxygen evolution reaction, however, it still needs a relatively high overpotential to achieve the threshold current density. Herein the catalyst's electronic structure is tuned by doping vanadium ions into the NiFe LDHs laminate forming ternary NiFeV LDHs to reduce the onset potential, achieving unprecedentedly efficient electrocatalysis for water oxidation. Only 1.42 V (vs reversible hydrogen electrode (RHE), ≈195 mV overpotential) is required to achieve catalytic current density of 20 mA cm?2 with a small Tafel slope of 42 mV dec?1 in 1 m KOH solution, which manifests the best of NiFe‐based catalysts reported till now. Electrochemical analysis and density functional theory +U simulation indicate that the high catalytic activity of NiFeV LDHs mainly attributes to the vanadium doping which can modify the electronic structure and narrow the bandgap thereby bring enhanced conductivity, facile electron transfer, and abundant active sites.  相似文献   

4.
Moisture-enabled electricity generation (MEG) is a prominent renewable energy harvesting technology in hydrovoltaic power generation, boasting the broadest energy harvesting spectrum. However, practical application faces limitations due to irreversible performance degradation caused by structural changes and moisture-generated carrier (MGC) losses in Moisture-enabled electricity (ME) materials, rendering them non-renewable. This study introduces a rechargeable moisture-enabled electricity cell (rMEC) based on dual ME functional layers and active metal electrodes. The rMEC demonstrates outstanding power generation performance, with a single cell providing an output voltage of 1.08 V and a power density of 5.83 µW cm−2 through redox assistance. Moreover, it can be recharged when MGCs are lost, utilizing the reversibility of the redox reaction (moisture of H2O2 solution) for self-repair. Notebly, the rMEC maintains stable operation for over 2080 h and undergoes 100 charging/working cycles, marking the longest span life record in MEG research history. When exposed to industrial wastewater/gases with oxidation characteristics, the rMEC not only completes charging but also facilitates the reuse of toxic waste resources. The environmentally friendly rMEC, with its long cycle life, significantly overcomes the limitations of non-renewable ME materials, serving as a paradigm for promoting iterative upgrades in MEG technology.  相似文献   

5.
The oxygen evolution reaction (OER) has aroused extensive interest from materials scientists in the past decade by virtue of its great significance in the energy storage/conversion systems such as water splitting, rechargeable metal–air batteries, carbon dioxide (CO2) reduction, and fuel cells. Among all the materials capable of catalyzing OER, layered double hydroxides (LDHs) stand out as one of the most effective electrocatalysts owing to their compositional and structural flexibility as well as the tenability and the simplicity of their preparation process. For this reason, numerous efforts have been dedicated to adjusting the structure, forming the well‐defined morphology, and developing the preparation methods of LDHs to promote their electrocatalytic performance. In this article, recent advances in the rational design of LDH‐based electrocatalysts toward OER are summarized. Specifically, various tactics for the synthetic methods, as well as structural and composition regulations of LDHs, are further highlighted, followed by a discussion on the influential factors for OER performance. Finally, the remaining challenges to investigate and improve the catalyzing ability of LDH electrocatalysts are stated to indicate possible future development of LDHs.  相似文献   

6.
The triboelectric nanogenerator (TENG) is a new energy technology that is enabled by coupled contact electrification and electrostatic induction. The conventional TENGs are usually based on organic polymer insulator materials, which have the limitations and disadvantages of high impedance and alternating output current. Here, a tribovoltaic effect based metal–semiconductor direct‐current triboelectric nanogenerator (MSDC‐TENG) is reported. The tribovoltaic effect is facilitated by direct voltage and current by rubbing a metal/semiconductor on another semiconductor. The frictional energy released by the forming atomic bonds excites nonequilibrium carriers, which are directionally separated to form a current under the built‐in electric field. The continuous average open‐circuit voltage (10–20 mV), short‐circuit direct‐current output (10–20 µA), and low impedance characteristic (0.55–5 kΩ) of the MSDC‐TENG can be observed during relative sliding of the metal and silicon. The working parameters are systematically studied for electric output and impedance characteristics. The results reveal that faster velocity, larger pressure, and smaller area can improve the maximum power density. The internal resistance is mainly determined by the velocity and the electrical resistance of semiconductor. This work not only expands the material candidates of TENGs from organic polymers to semiconductors, but also demonstrates a tribovoltaic effect based electric energy conversion mechanism.  相似文献   

7.
Layered double hydroxides (LDHs) are promising cathode materials for supercapacitors because of the enhanced flow efficiency of ions in the interlayers. However, the limited active sites and monotonous metal species further hinder the improvement of the capacity performance. Herein, cobalt sulfide quantum dots (Co9S8‐QDs) are effectively created and embedded within the interlayer of metal‐organic‐frameworks‐derived ternary metal LDH nanosheets based on in situ selective vulcanization of Co on carbon fibers. The hybrid CF@NiCoZn‐LDH/Co9S8‐QD retains the lamellar structure of the ternary metal LDH very well, inheriting low transfer impedance of interlayer ions. Significantly, the selectively generated Co9S8‐QDs expose more abundant active sites, effectively improving the electrochemical properties, such as capacitive performance, electronic conductivity, and cycling stability. Due to the synergistic relationship, the hybrid material delivers an ultrahigh electrochemical capacity of 350.6 mAh g?1 (2504 F g?1) at 1 A g?1. Furthermore, hybrid supercapacitors fabricated with CF@NiCoZn‐LDH/Co9S8‐QD and carbon nanosheets modified by single‐walled carbon nanotubes display an outstanding energy density of 56.4 Wh kg?1 at a power density of 875 W kg?1, with an excellent capacity retention of 95.3% after 8000 charge–discharge cycles. Therefore, constructing hybrid electrode materials by in situ‐created QDs in multimetallic LDHs is promising.  相似文献   

8.
The energy densities of most supercapacitors (SCs) are low, hindering their practical applications. To construct SCs with ultrahigh energy densities, a porous titanium carbide (TiC)/boron‐doped diamond (BDD) composite electrode is synthesized on a titanium plate that is pretreated using a plasma electrolytic oxidation (PEO) technique. The porous and nanometer‐thick TiO2 layer formed during PEO process prevents the formation of brittle titanium hydride and enhances the BDD growth during chemical vapor deposition processes. Meanwhile, the in situ conversion of TiO2 into TiC is achieved. Combination of this capacitor electrode with soluble redox electrolytes leads to the fabrication of high‐performance SCs in both aqueous and organic solutions. In 0.05 m Fe(CN)63?/4? + 1 m Na2SO4 aqueous solution, the capacitance is as high as 46.3 mF cm?2 at a current density of 1 mA cm?2; this capacitance remains 92% of its initial value even after 10 000 charge/discharge cycles; the energy density is up to 47.4 Wh kg?1 at a power density of 2236 W kg?1. The performance of constructed SCs is superior to most available SCs and some electrochemical energy storage devices like batteries. Such a porous capacitor electrode is thus promising for the construction of high‐performance SCs for practical applications.  相似文献   

9.
Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high‐power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel‐like structure of a carbonized eggplant (EP) as a stable “host” for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as‐formed EP–LiF composite anode maintains ≈90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP–LiF offers much improved symmetric cell and full‐cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light‐weight high‐performance current collector, achieving an average Coulombic efficiency ≈99.1% in ether‐based electrolytes with 2.2 mAh cm?2 cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next‐generation high‐energy density batteries.  相似文献   

10.
An enormous research effort is currently being directed towards the development of efficient visible‐light‐driven photocatalysts for renewable energy applications including water splitting, CO2 reduction and alcohol photoreforming. Layered double hydroxide (LDH)‐based photocatalysts have emerged as one of the most promising candidates to replace TiO2‐based photocatalysts for these reactions, owing to their unique layered structure, compositional flexibility, controllable particle size, low manufacturing cost and ease of synthesis. By introducing defects into LDH materials through the control of their size to the nanoscale, the atomic structure, surface defect concentration, and electronic and optical characteristics of LDH materials can be strategically engineered for particular applications. Furthermore, through the use of advanced characterization techniques such as X‐ray absorption fine structure, positron annihilation spectrometry, X‐ray photoelectron spectroscopy, electron spin resonance, density‐functional theory calculations, and photocatalytic tests, structure‐activity relationships can be established and used in the rational design of high‐performance LDH‐based photocatalysts for efficient solar energy capture. LDHs thus represent a versatile platform for semiconductor photocatalyst development with application potential across the energy sector.  相似文献   

11.
Ternary NiCoFe‐layered double hydroxide (NiCoIIIFe‐LDH) with Co3+ is grafted on nitrogen‐doped graphene oxide (N‐GO) by an in situ growth route. The array‐like colloid composite of NiCoIIIFe‐LDH/N‐GO is used as a bifunctional catalyst for both oxygen evolution/reduction reactions (OER/ORR). The NiCoIIIFe‐LDH/N‐GO array has a 3D open structure with less stacking of LDHs and an enlarged specific surface area. The hierarchical structure design and novel material chemistry endow high activity propelling O2 redox. By exposing more amounts of Ni and Fe active sites, the NiCoIIIFe‐LDH/N‐GO illustrates a relatively low onset potential (1.41 V vs reversible hydrogen electrode) in 0.1 mol L?1 KOH solution under the OER process. Furthermore, by introducing high valence Co3+, the onset potential of this material in ORR is 0.88 V. The overvoltage difference is 0.769 V between OER and ORR. The key factors for the excellent bifunctional catalytic performance are believed to be the Co with a high valence, the N‐doping of graphene materials, and the highly exposed Ni and Fe active sites in the array‐like colloid composite. This work further demonstrates the possibility to exploit the application potential of LDHs as OER and ORR bifunctional electrochemical catalysts.  相似文献   

12.
A novel sodium hybrid capacitor (NHC) is constructed with an intercalation‐type sodium material [carbon coated‐Na3V2(PO4)3, C‐NVP] and high surface area‐activated carbon derived from an eco‐friendly resource cinnamon sticks (CDCs) in an organic electrolyte. This novel NHC possesses a combination of high energy and high power density, along with remarkable electrochemical stability. In addition, the C‐NVP/CDC system outperforms present, well‐established lithium hybrid capacitor systems in all areas, and can thus be added to the list of candidates for future electric vehicles. A careful optimization of mass balance between electrode materials enables the C‐NVP/CDC cell to exhibit extraordinary capacitance performance. This novel NHC produces an energy density of 118 Wh kg?1 at a specific power of 95 W kg?1 and retains an energy density of 60 Wh kg?1 with high specific power of 850 W kg?1. Furthermore, a discharge capacitance of 53 F g?1 is obtained from the C‐NVP/CDC cell at a 1 mA cm?2 current density, along with 95% capacitance retention, even after 10 000 cycles. The sluggish kinetics of the Na ion battery system is successfully overcome by developing a stable, high‐performing NHC system.  相似文献   

13.
Supercapacitors can deliver high‐power density and long cycle stability, but the limited energy density due to poor electronic and ionic conductivity of the supercapacitor electrode has been a bottleneck in many applications. A strategy to prepare microflower‐like NiMn‐layered double hydroxides (LDH) with sulfidation is delineated to reduce the charge transfer resistance of supercapacitor electrode and realize faster reversible redox reactions with notably enhanced specific capacitance. The incorporation of graphite oxide (GO) in NiMn LDH during sulfidation leads to simultaneous reduction of GO with enhanced conductivity, lessened defects, and doping of S into the graphitic structure. Cycling stability of the sulfidized composite electrode is enhanced due to the alleviation of phase transformation during electrochemical cycling test. As a result, this sulfidation product of LDH/GO (or LDHGOS) can reach a high‐specific capacitance of 2246.63 F g?1 at a current density of 1 A g?1, and a capacitance of 1670.83 F g?1 is retained at a high‐current density of 10 A g?1, exhibiting an outstanding capacitance and rate performance. The cycling retention of the LDHGOS electrode is also extended to ≈ 67% after 1500 cycles compared to only ≈44% of the pristine NiMn LDH.  相似文献   

14.
The development of highly active and robust non-noble-metal electrocatalysts for alkaline hydrogen evolution reaction (HER) at industrial-level current density is the key for industrialization of alkaline water electrolysis. Herein, a superhydrophilic self-supported Ni/Y2O3 heterostructural electrocatalyst is constructed by a high-temperature selective reduction method, which demonstrates excellent catalytic performance for alkaline HER at high current density. Concretely, this catalyst can drive 10 mA cm−2 at a low overpotential of 61.1 ± 3.7 mV, with a low Tafel slope of 52.8 mV dec−1. Moreover, it also shows outstanding long-term durability at high current density of 1000 mA cm−2 for 500 h in 1 m  KOH, evidently exceeding the metallic Ni and Pt/C(20%) catalysts. The superior HER activity can be attributed to the multi-interface engineering of the Ni/Y2O3 electrode. Construction of Ni/Y2O3 heterogeneous interface with dual active sites lowers the energy barrier of water dissociation and optimizes the hydrogen adsorption energy, thus synergistically accelerating the overall HER kinetics. Also, its superhydrophilic self-supported electrode structure with the firm electrocatalyst-substrate interface and weakened electrocatalyst-bubble interfacial force ensures rapid charge transfer, prevents catalyst shedding, and expedites the H2 gas bubble release timely, further enhancing the catalytic activity and stability at high current density.  相似文献   

15.
A novel fluorine-free electrolyte comprising a solution of lithium bis(oxalato)borate in ethyl isopropyl sulfone is presented. It is characterized by its safety and non-toxic properties, along with the capability to effectively suppress the anodic dissolution of aluminum. Successful high-temperature application of this electrolyte in combination with various capacitor- and battery-like electrode materials is shown. Further utilization in a lithium-ion capacitor and a lithium-ion battery is demonstrated. To the best of the knowledge, the lithium-ion capacitor presented in this work represents the first entirely fluorine-free device suitable for high-temperature applications. When operating at 60 °C, this device delivers a maximum energy output of 169 Wh kg−1AM at a power of 200 W kg−1AM and even 80 Wh kg1AM at 10 kW kg-1AM, along with the ability to retain 80% of its initial capacitance after 3500 cycles at 5 A g−1. As such, this novel electrolyte is a promising alternative to conventional fluorine-containing configurations since its performance is capable to match or even surpass that of most similar laboratory-scale LICs.  相似文献   

16.
High energy density at high power density is still a challenge for the current Li‐ion capacitors (LICs) due to the mismatch of charge‐storage capacity and electrode kinetics between capacitor‐type cathode and battery‐type anode. In this work, B and N dual‐doped 3D porous carbon nanofibers are prepared through a facile method as both capacitor‐type cathode and battery‐type anode for LICs. The B and N dual doping has profound effect in tuning the porosity, functional groups, and electrical conductivity for the porous carbon nanofibers. With rational design, the developed B and N dual‐doped carbon nanofibers (BNC) exhibit greatly improved electrochemical performance as both cathode and anode for LICs, which greatly alleviates the mismatch between the two electrodes. For the first time, a 4.5 V “dual carbon” BNC//BNC LIC device is constructed and demonstrated, exhibiting outstanding energy density and power capability compared to previously reported LICs with other configurations. In specific, the present BNC//BNC LIC device can deliver a large energy density of 220 W h kg?1 and a high power density of 22.5 kW kg?1 (at 104 W h kg?1) with reasonably good cycling stability (≈81% retention after 5000 cycles).  相似文献   

17.
In this work, porous monolayer nickel‐iron layered double hydroxide (PM‐LDH) nanosheets with a lateral size of ≈30 nm and a thickness of ≈0.8 nm are successfully synthesized by a facile one‐step strategy. Briefly, an aqueous solution containing Ni2+ and Fe3+ is added dropwise to an aqueous formamide solution at 80 °C and pH 10, with the PM‐LDH product formed within only 10 min. This fast synthetic strategy introduces an abundance of pores in the monolayer NiFe‐LDH nanosheets, resulting in PM‐LDH containing high concentration of oxygen and cation vacancies, as is confirmed by extended X‐ray absorption fine structure and electron spin resonance measurements. The oxygen and cation vacancies in PM‐LDH act synergistically to increase the electropositivity of the LDH nanosheets, while also enhancing H2O adsorption and bonding strength of the OH* intermediate formed during water electrooxidation, endowing PM‐LDH with outstanding performance for the oxygen evolution reaction (OER). PM‐LDH offers a very low overpotential (230 mV) for OER at a current density of 10 mA cm?2, with a Tafel slope of only 47 mV dec?1, representing one of the best OER performance yet reported for a NiFe‐LDH system. The results encourage the wider utilization of porous monolayer LDH nanosheets in electrocatalysis, catalysis, and solar cells.  相似文献   

18.
Regulating the metal-support interaction of the anchored metal nanoclusters is recognized as valid approach to optimize the electrocatalytic performance through tuning the interfacial electronic structure. However, developing novel support and understanding the interfacial electron accumulation on modulating the reaction kinetics are still elusive. Herein, highly-dispersed Ruthenium (Ru) nanoclusters anchored onto phosphorous doped molybdenum boride (Ru/P-MoB) is developed through ultrafast microwave-plasma (60 s) approach. The synthesized Ru/P-MoB impressively promote the hydrogen evolution with low overpotentials of 34, 45, and 40 mV to drive 10 mA cm−2 in alkaline freshwater, alkaline seawater and acid media. Specially, it presents superior turnover frequency and mass/specific activity relative to Pt/C, Ru/C, and Ru/MoB. Moreover, the anion exchange membrane (AEM) electrolyzer cell based on Ru/P-MoB can achieve 500 and 1000 mA cm−2 with small voltages of 1.71 and 1.78 V with good durability. Experimental and density functional theoretical (DFT) analysis reveal that the strong metal-support interactions (Ru─Mo and Ru─P bonds) with generated interfacial electron-enriched Ru, and then favoring the water-molecule adsorption/dissociation and optimal H intermediate adsorption free energy. This work provides novel designing avenue to exploit electrocatalysts with outstanding catalytic performance under high current density at practical high-temperature.  相似文献   

19.
Pseudocapacitors are now reaching the energy density limits set by the surface redox reaction of their electrode materials, requiring new cation paradigms for a fast cation Faradaic reaction with high capacitance. In this work, a flexible and ultrahigh energy density capacitor is reported via enhancing surface/interface of active colloids and supported carbon cloth. A flexible asymmetrical capacitor assembled with Ni2+ colloidal cathode and Fe3+ colloidal anode displays a high energy density of 353 W h kg?1 at the power density of 2250 W kg?1, outperforming recent reported pseudocapacitors, and shows superior cycling stability after 10 000 charge–discharge cycles at current density of 30 A g?1. This work demonstrates that the optimized surface/interface of carbon cloth and colloids can lead to the enhancement of both stability and activity of colloidal electrode.  相似文献   

20.
Potassium‐ion hybrid capacitors (PIHCs) hold the advantages of high‐energy density of batteries and high‐power output of supercapacitors and thus present great promise for the next generation of electrochemical energy storage devices. One of the most crucial tasks for developing a high‐performance PIHCs is to explore a favorable anode material with capability to balance the kinetics mismatch between battery‐type anodes and capacitor‐type cathode. Herein, a reliable route for fabricating sulfur and nitrogen codoped 3D porous carbon nanosheets (S‐N‐PCNs) is reported. Systematic characterizations coupled with kinetics analysis indicate that the doped heteroatoms of sulfur and nitrogen and the amplified graphite interlayer can provide ample structural defects and redox active sites that are beneficial for improving pseudocapacitive activity, enabling fast kinetics toward efficient potassium‐ion storage. The S‐N‐PCNs are demonstrated to exhibit superior potassium storage capability with a high capacity of 107 mAh g?1 at 20 A g?1 and long cycle stability. The as‐developed PIHCs present impressive electrochemical performance with an operating voltage as high as 4.0 V, an energy density of 187 Wh kg?1, a power density of 5136 W kg?1, and a capacity retention of 86.4% after 3000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号