首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to better understand the immune response in prawns after treatment with the immunostimulant lipopolysaccharide (LPS), in this study, the differential gene expression of the hemocytes from LPS-injected versus non-injected prawns (Macrobrachium rosenbergii) were isolated and identified using suppression subtractive hybridization (SSH). The hemocytes were extracted after treatment for 1, 6, and 12 h. The upregulated genes (i.e., where gene expression was elevated) were identified and could be divided into four classes on the basis of physiological function: genes concerning defense-related molecules, genes involved in energy-production (respiration), genes related to protein synthesis and folding, and genes with unknown function. The time-course for gene expression indicated that, except for expression of the gene anti-microbial peptide (amp), which was increased at 12 h after LPS treatment, the expression of the other two immune-related genes was much earlier (at 1 h), including alpha-2-macroglobulin (α2-M) and Mas-like protein (mas). These results suggest that in the early phase of LPS stimulation some immune reactions regulated by α-2M and Mas may be induced, such as the activation of prophenoloxidase activating system, opsonization, and anti-microbial activity. In addition, six unigenes with unproven function were particularly interesting and worthy of further study because their expression in LPS-treated hemocytes was clearly enhanced.  相似文献   

2.
3.
Insects rely on an innate immune system to effectively respond to pathogenic challenges. Most studies on the insect immune system describe changes in only one or two immune parameters following a single immune challenge. In addition, a variety of insect models, often at different developmental stages, have been used, making it difficult to compare results across studies. In this study, we used adult male Acheta domesticus crickets to characterize the response of the insect innate immune system to three different immune challenges: injection of bacterial lipopolysaccharides (LPS); injection of live Serratia marcescens bacteria; or insertion of a nylon filament into the abdomen. For each challenge, we measured and compared hemolymph phenoloxidase (PO) and lysozyme-like enzyme activities; the number of circulating hemocytes; and the nodulation responses of challenged and un-challenged crickets. We found that injection of an LD50 dose of LPS from Escherichia coli elicited a more rapid response than an LD50 dose of LPS from S. marcescens. LPS injection could cause a rapid decrease 2 hpi, followed by an increase by 7 dpi, in the number of circulating hemocytes. In contrast, injection of live S. marcescens produced a rapid increase and then decrease in hemocyte number. This was followed by an increase in the number of hemocytes at 7 dpi, similar to that observed following LPS injection. Both LPS and live bacteria decreased hemolymph PO activity, but the timing of this effect was dependent on the challenge. Live bacteria, but not LPS, induced an increase in lysozyme-like activity in the hemolymph. Insertion of a nylon filament induced a decrease in hemolymph PO activity 2 h after insertion of the filament, but had no effect on hemocyte number or lytic activity. Our results indicate that the innate immune system’s response to each type of challenge can vary greatly in both magnitude and timing, so it is important to assess multiple parameters at multiple time points in order to obtain a comprehensive view of such responses.  相似文献   

4.
5.
Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity.  相似文献   

6.
Lipolysaccharide (LPS), a component of outer membrane protein of gram-negative bacteria, reportedly stimulates fish immune system. However, mechanisms driving this immunomodulatory effect are yet unknown. To determine effects of Escherichia coli lipopolysaccharide on regulation of immune response and protein expression of striped catfish (Pangasianodon hypophthalmus), juvenile fish (20–25 g) were injected with 3, 15 or 45 mg E.coli LPS/kg and challenged with Edwardsiella ictaluri. Plasma cortisol and glucose were rather low and did not differ (p < 0.05) among treatments. All LPS treatments differed regarding blood cell count and immune variables such as plasma and spleen lysozyme, complement activity and antibody titer, 3 mg LPS/kg yielding best results; red blood cell count was not affected by LPS treatment. Accumulated mortalities after bacterial challenge were 23.4, 32.8, 37.7 and 52.5% for treatment 3, 15, 45 mg LPS/kg fish and control respectively. Proteomic analysis of peripheral blood mononuclear cells (PBMC) confirmed that LPS induced differentially over-expressed immune proteins such as complement component C3 and lysozyme C2 precursor. Regulation of other proteins such as Wap65, alpha-2 macroglobulin-3 and transferrin precursor was also demonstrated. Striped catfish injected with E.coli LPS enhanced innate immune responses.  相似文献   

7.
In the blue crab Callinectes sapidus, injection with the bacterial pathogen Vibrio campbellii causes a decrease in oxygen consumption. Histological and physiological evidence suggests that the physical obstruction of hemolymph flow through the gill vasculature, caused by aggregations of bacteria and hemocytes, underlies the decrease in aerobic function associated with bacterial infection. We sought to elucidate the bacterial properties sufficient to induce a decrease in circulating hemocytes (hemocytopenia) as an indicator for the initiation of hemocyte aggregation and subsequent impairment of respiration. Lipopolysaccharide (LPS), the primary component of the gram-negative bacterial cell wall, is known to interact with crustacean hemocytes. Purified LPS was covalently bound to the surfaces of polystyrene beads resembling bacteria in size. Injection of these "LPS beads" caused a decrease in circulating hemocytes comparable to that seen with V. campbellii injection, while beads alone failed to do so. These data suggest that in general, gram-negative bacteria could stimulate hemocytopenia. To test this hypothesis, crabs were injected with different bacteria--seven gram-negative and one gram-positive species--and their effects on circulating hemocytes were assessed. With one exception, all gram-negative strains caused decreases in circulating hemocytes, suggesting an important role for LPS in the induction of this response. However, LPS is not necessary to provoke the immune response given that Bacillus coral, a gram-positive species that lacks LPS, caused a decrease in circulating hemocytes. These results suggest that a wide range of bacteria could impair metabolism in C. sapidus.  相似文献   

8.
Calcineurin (CN), a multifunctional protein, mediates the immune response through diverse signaling pathways in mammals, while the function of CN in the immune response of molluscan hemocytes still remains unclear. In the present study, we detected the distribution of CN in various tissues and the expression levels of Pf-CNA and Pf-CNB gene in hemocytes of Pinctada fucata. After the preparation of hemocyte monolayers, we checked the response of enzymatic activity of CN, the degradation level of IκBα, the activity of iNOS and the production of NO, and IL-2 to the challenge of lipopolysaccharide (LPS) and cyclosporin A (CsA). CN activity in hemocytes was very sensitive to both the stimulation of LPS and the inhibition of CsA. Most importantly, IκBα degradation in hemocytes was induced by LPS and attenuated by CsA. Consequently, the activity of iNOS was elevated and the production of NO was increased. Additionally, we found that the synthesis of IL-2 was increased by LPS but was apparently weakened by CsA. In vivo bacterial clearance experiments showed that CsA significantly decreased the ability of in vivo bacteria clearance in pearl oyster. All the results revealed, for the first time, that CN mediated the immune response of molluscan hemocytes via activating NF-κB signaling pathway.  相似文献   

9.
10.
11.
12.
Bordetella bronchiseptica produces respiratory disease primarily in mammals including humans. Although a considerably amount of research has been generated regarding lipopolysaccharide (LPS) role during infection and stimulating innate and adaptive immune response, mechanisms involved in LPS synthesis are still unknown. In this context we searched in B. bronchiseptica genome for putative glycosyltransferases. We found possible genes codifying for enzymes involved in sugar substitution of the LPS structure. We decided to analyse BB3394 to BB3400 genes, closed to a previously described LPS biosynthetic locus in B. pertussis. Particularly, conservation of BB3394 in sequenced B. bronchiseptica genomes suggests the importance of this gene for bacteria normal physiology. Deletion of BB3394 abolished resistance to naive serum as described for other LPS mutants. When purified LPS was analyzed, differences in the LPS core structure were found. Particularly, a GalNA branched sugar substitution in the core was absent in the LPS obtained from BB3394 deletion mutant. Absence of GalNA in core LPS alters immune response in vivo but is able to induce protective response against B. bronchiseptica infection.  相似文献   

13.
Invertebrates rely on an innate immune system to combat invading pathogens. The system is initiated in the presence of cell wall components from microbes like lipopolysaccharide (LPS), β-1,3-glucan (βG) and peptidoglycan (PG), altogether known as pathogen-associated molecular patterns (PAMPs), via a recognition of pattern recognition protein (PRP) or receptor (PRR) through complicated reactions. We show herein that shrimp hemocytes incubated with LPS, βG, and PG caused necrosis and released endogenous molecules (EMs), namely EM-L, EM-β, and EM-P, and found that shrimp hemocytes incubated with EM-L, EM-β, and EM-P caused changes in cell viability, degranulation and necrosis of hemocytes, and increased phenoloxidase (PO) activity and respiratory burst (RB) indicating activation of immunity in vitro. We found that shrimp receiving EM-L, EM-β, and EM-P had increases in hemocyte count and other immune parameters as well as higher phagocytic activity toward a Vibrio pathogen, and found that shrimp receiving EM-L had increases in proliferation cell ratio and mitotic index of hematopoietic tissues (HPTs). We identified proteins of EMs deduced from SDS-PAGE and LC-ESI-MS/MS analyses. EM-L and EM-P contained damage-associated molecular patterns (DAMPs) including HMGBa, HMGBb, histone 2A (H2A), H2B, and H4, and other proteins including proPO, Rab 7 GPTase, and Rab 11 GPTase, which were not observed in controls (EM-C, hemocytes incubated in shrimp salt solution). We concluded that EMs induced by PAMPs contain DAMPs and other immune molecules, and they could elicit innate immunity in shrimp. Further research is needed to identify which individual molecule or combined molecules of EMs cause the results, and determine the mechanism of action in innate immunity.  相似文献   

14.
15.
16.
17.
The Toll-like receptor 4 (TLR4) plays a crucial role in innate inflammatory responses, as it recognizes gram-negative bacteria (or their products) and contributes greatly to host defense against invading pathogens. Though TLR4 overexpressing transgenic sheep, resistant to certain diseases related with gram-negative bacteria, had been bred in our previous research, the effects of overexpression of TLR4 on innate immune response remained unclear. In this study, TLR4 overexpressing ovine macrophages were obtained from peripheral blood, and it was found that the overexpression of TLR4 initially promoted the production of proinflammatory cytokines TNFα and IL-6 by activating TLR4-mediated IRAK4-dependent NF-κB and MAPK (JNK and ERK1/2) signaling following LPS stimulation. However, this effect was later impaired due to increased internalization of TLR4 into endosomal compartment of the macrophages. Then the overexpression of TLR4 triggered TBK1-dependent interferon-regulatory factor-3 (IRF-3) expression, which in turn led to the induction of IFN-β and IFN-inducible genes (i.e.IP10, IRG1 and GARG16). Understandably, an increased IFN-β level facilitated phosphorylation of STAT1 to induce expression of innate antiviral genes Mx1 and ISG15, suggesting that TLR4 overexpressing macrophages were equipped better against viral infection. Correspondingly, the bacterial burden in these macrophages, after infection with live S. Typhimurium, was decreased significantly. In summary, the results indicated that overexpression of TLR4 could enhance innate inflammatory responses, initiate the innate antiviral immunity, and control effectively S. Typhimurium growth in ovine macrophages.  相似文献   

18.
Although the crab Scylla paramamosain has been cultured in China for a long time, little knowledge is available on how crabs respond to infection by bacteria. A forward suppression subtractive hybridization (SSH) cDNA library was constructed from their hemocytes and the up-regulated genes were identified in order to isolate differentially expressed genes in S. paramamosain in response to bacterial lipopolysaccharide (LPS). A total of 721 clones on the middle scale in the SSH library were sequenced. Among these genes, 271 potentially functional genes were recognized based on the BLAST searches in NCBI and were categorized into seven groups in association with different biological processes using AmiGO against the Gene Ontology database. Of the 271 genes, 269 translatable DNA sequences were predicted to be proteins, and the putative amino acid sequences were searched for conserved domains and proteins using the CD-Search service and BLASTp. Among 271 genes, 179 (66.1%) were annotated to be involved in different biological processes, while 92 genes (33.9%) were classified as an unknown-function gene group. It was noted that only 18 of the 271 genes (6.6%) had previously been reported in other crustaceans and most of the screened genes showed less similarity to known sequences based on BLASTn results, suggesting that 253 genes were found for the first time in S. paramamosain. Furthermore, two up-regulated genes screened from the SSH library were selected for full-length cDNA sequence cloning and in vivo expression study, including Sp-superoxide dismutase (Sp-Cu-ZnSOD) gene and Sp-serpin gene. The differential expression pattern of the two genes during the time course of LPS challenge was analyzed using real-time PCR. We found that both genes were significantly expressed in LPS-challenged crabs in comparison with control. Taken together, the study primarily provides the data of the up-regulated genes associated with different biological processes in S. paramamosain in response to LPS, by which the interesting genes or proteins potentially involved in the innate immune defense of S. paramamosain will be investigated in future.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号