首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A disintegrin and metalloproteinase 8 (ADAM8) protein is a multi‐domain transmembrane glycoprotein which involves in extracellular matrix remodelling, cell adhesion, invasion and migration. ADAM8 and epithelial‐mesenchymal transition (EMT) play an important role in tumour invasion has been well established. However, the interaction between ADAM8 and EMT has remained unclear. The data of colon cancer patients obtained from TCGA (The Cancer Genome Atlas) and GTEx (Genotype‐Tissue Expression Project) were analysed by the bioinformatics research method. The expression of ADAM8 in colon cancer cells was up‐regulated and down‐regulated by transfecting with the expression plasmid and small interfering RNA, respectively. Transwell invasion assay, immunohistochemistry, immunocytochemistry, Western blotting and qRT‐PCR were utilized to study the effect of ADAM8 on colon cancer cell''s EMT and its related mechanisms. Analysis of TCGA and GTEx data revealed that ADAM8 was linked to poor overall survival in colon cancer patients. Besides, ADAM8 was correlated with multiple EMT biomarkers (E‐cadherin, N‐cadherin, Vimentin, Snail2 and ZEB2). In vitro, we also proved that the up‐regulation of ADAM8 could promote EMT effect and enhance the invasive ability of colon cancer cells. On the contrary, the down‐regulation of ADAM8 in colon cancer cells attenuated these effects above. Further studies suggested that ADAM8 modulated EMT on colon cancer cells through TGF‐β/Smad2/3 signalling pathway. Our research suggested that ADAM8 could be a potential biomarker for the prognosis of colon cancer and induced EMT to promote the invasion of colon cancer cells via activating TGF‐β/Smad2/3 signalling pathway.  相似文献   

2.
The underexpression of the long noncoding RNA blood vessel epicardial substance antisense RNA 1 (BVES-AS1) has been shown in colon adenocarcinoma (COAD) patients. However, its role in COAD remains to be explored. This study aimed to investigate the function and potential mechanism of BVES-AS1 in COAD. Colony formation, Cell Counting Kit-8, JC-1 mitochondrial membrane potential assay, wound healing, transwell, and western blot analyses were used to measure cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) in COAD cells. RNA pull-down, luciferase reporter, and RNA binding protein immunoprecipitation assays were used to detect the interaction of BVES-AS1 and downstream genes. BVES-AS1 was expressed at low levels in COAD cells. Overexpressed BVES-AS1 inhibited COAD cell proliferation, migration, invasion, and EMT while elevating cell apoptosis. Mechanistically, BVES-AS1 functioned as a competing endogenous RNA sponging miR-522-3p to regulate the expression of nearby gene blood vessel epicardial substance (BVES). Besides this, BVES-AS1 recruited TATA-box binding protein associated factor 15 (TAF15) to promote BVES messenger RNA stability. Taken together, our study confirmed that BVES-AS1 inhibited COAD progression via interacting with miR-522-3p and TAF15 to regulate BVES expression, which might offer a perspective for COAD treatment.  相似文献   

3.
Larotrectinib (Lar) is a highly selective and potent small‐molecule inhibitor used in patients with tropomyosin receptor kinase (TRK) fusion‐positive cancers, including colon cancer. However, the underlying molecular mechanisms specifically in patients with colon cancer have not yet been explored. Our data showed that Lar significantly suppressed proliferation and migration of colon cancer cells. In addition, Lar suppressed the epithelial–mesenchymal transition (EMT) process, as evidenced by elevation in E‐cadherin (E‐cad), and downregulation of vimentin and matrix metalloproteinase (MMP) 2/9 expression. Furthermore, Lar was found to activate autophagic flux, in which Lar increased the ratio between LC3II/LC3I and decreased the expression of p62 in colon cancer cells. More importantly, Lar also increased AMPK phosphorylation and suppressed mTOR phosphorylation in colon cancer cells. However, when we silenced AMPK in colon cancer cells, Lar‐induced accumulation of autolysomes as well as Lar‐induced suppression of the EMT process were significantly diminished. An in vivo assay also confirmed that tumour volume and weight decreased in Lar‐treated mice than in control mice. Taken together, this study suggests that Lar significantly suppresses colon cancer proliferation and migration by activating AMPK/mTOR‐mediated autophagic cell death.  相似文献   

4.
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.  相似文献   

5.
6.
YAP1, a key mediator of the Hippo pathway, plays an important role in tumorigenesis. Alternative splicing of human YAP1 mRNA results in two major isoforms: YAP1‐1, which contains a single WW domain, and YAP1‐2, which contains two WW domains, respectively. We here investigated the functions and the underlying regulatory mechanisms of the two YAP1 isoforms in the context of EGF‐induced epithelial‐mesenchymal transition (EMT) in non‐small cell lung cancer (NSCLC). Human NSCLC cell lines express both YAP1‐1 and YAP1‐2 isoforms—although when compared to YAP1‐1, YAP1‐2 mRNA levels are higher while its protein expression levels are lower. EGF treatment significantly promoted YAP1 expression as well as EMT process in NSCLCs, whereas EGF‐induced EMT phenotype was significantly alleviated upon YAP1 knockdown. Under normal culture condition, YAP1‐1 stable expression cells exhibited a stronger migration ability than YAP1‐2 expressing cells. However, upon EGF treatment, YAP1‐2 stable cells showed more robust migration than YAP1‐1 expressing cells. The protein stability and nuclear localization of YAP1‐2 were preferentially enhanced with EGF treatment. Moreover, EGF‐induced EMT and YAP1‐2 activity were suppressed by inhibitor of AKT. Our results suggest that YAP1‐2 is the main isoform that is functionally relevant in promoting EGF‐induced EMT and ultimately NSCLC progression.  相似文献   

7.
Prostate cancer is the most common malignancy in men in developed countries. In previous study, we identified HNF1B (Hepatocyte Nuclear Factor 1β) as a downstream effector of Enhancer of zeste homolog 2 (EZH2). HNF1B suppresses EZH2‐mediated migration of two prostate cancer cell lines via represses the EMT process by inhibiting SLUG expression. Besides, HNF1B expression inhibits cell proliferation through unknown mechanisms. Here, we demonstrated that HNF1B inhibited the proliferation rate of prostate cancer cells. Overexpression of HNF1B in prostate cancer cells led to the arrest of G1 cell cycle and decreased Cyclin D1 expression. In addition, we re‐explored data from ChIP‐sequencing (ChIP‐seq) and RNA‐sequencing (RNA‐seq), and demonstrated that HNF1B repressed Cyclin D1 via direct suppression of SMAD6 expression. We also identified CDKN2A as a HNF1B‐interacting protein that would contribute to HNF1B‐mediated repression of SMAD6 expression. In summary, we provide the novel mechanisms and evidence in support HNF1B as a tumour suppressor gene for prostate cancer.  相似文献   

8.
Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid‐sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT‐PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug‐resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells’ proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and β‐catenin, vimentin and fibronectin expression via the AKT/GSK‐3β/Snail pathway driven by TGFβ/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK‐3β/Snail pathway.  相似文献   

9.
In the present study, we demonstrate the regulatory effects and mechanism of broussonin A and B, diphenylpropane derivatives isolated from Broussonetia kazinoki, on vascular endothelial growth factor‐A (VEGF‐A)–stimulated endothelial cell responses in vitro and microvessel sprouting ex vivo. Treatment with broussonin A or B suppressed VEGF‐A‐stimulated endothelial cell proliferation by regulating the expression of cell cycle–related proteins and the phosphorylation status of retinoblastoma protein. In addition, treatment with broussonin A or B abrogated VEGF‐A‐stimulated angiogenic responses including endothelial cell migration, invasion, tube formation and microvessel formation from rat aortic rings. These anti‐angiogenic activities of broussonin A and B were mediated through inactivation of VEGF‐A‐stimulated downstream signalling pathways, localization of vascular endothelial‐cadherin at cell‐cell contacts, and down‐regulation of integrin β1 and integrin‐liked kinase. Furthermore, treatment with broussonin A or B inhibited proliferation and invasion of non–small cell lung cancer and ovarian cancer cells. Taken together, our findings suggest the pharmacological potential of broussonin A and B in the regulation of angiogenesis, cancer cell growth and progression.  相似文献   

10.
11.
12.
This study investigated the mechanisms of migration inhibitory factor (MIF) and solute carrier family 3 member 2 (SLC3A2) in colorectal cancer progression. The levels of MIF and SLC3A2 expression in cells were measured by RT‐qPCR. SW480 and SW620 cells were transfected with sh‐MIF and sh‐SLC3A2, respectively. MIF, SLC3A2, GPX4, E‐cadherin and N‐cadherin expression were detected by immunofluorescence (IF). CCK8 and Transwell assays were performed to detect cell proliferation and migration. Co‐immunoprecipitation (CoIP) was used to measure the binding activity of MIF and SLC3A2. Finally, a nude mouse tumorigenicity assay was used to confirm the functions of MIF and SLC3A2 in colorectal cancer. Results showed that the levels of MIF and SLC3A2 expression were up‐regulated in colorectal cancer cells. Inhibition of MIF or SLC3A2 expression prevented cell proliferation, migration, epithelial‐mesenchymal transition (EMT) and invasion. In addition, knockdown of MIF and SLC3A2 promoted iron death in SW480 and SW620 cells. CoIP results showed that MIF and SLC3A2 directly interact with each other. Knockdown of both MIF and SLC3A2 inhibited tumour growth and metastasis via the AKT/GSK‐3β pathway in vivo. The Akt/GSK‐3β pathway was found to participate in regulating MIF and SLC3A2 both in vivo and in vitro. MIF and SLC3A2 might be potential biomarkers for monitoring the treatment of colorectal cancer.  相似文献   

13.
14.
15.
Mesenchymal stroma/stem‐like cells (MSCs) have antitumour activity, and MSC‐derived exosomes play a role in the growth, metastasis and invasion of tumour cells. Additionally, glycoprotein A repetition predominant (GARP) promotes oncogenesis in breast cancer. Therefore, GARP is speculated to be a target gene for cancer therapy. We aimed to explore the therapy role of MSC‐derived exosomes targeting GARP in mouse colon cancer cell MC38. We successfully established a GARP knockdown system using three kinds of siRNA‐GARP in MSC cells. Exosomes were isolated from MSC and siGARP‐MSC cells, and verified by the exosome surface protein markers CD9, CD63 and CD81. GARP expression was significantly decreased in siGARP‐MSC exosomes compared with that of MSC exosomes. We found that siGARP‐MSC exosomes inhibited cell proliferation, migration and invasion of MC38 cells, using CCK‐8, colony formation, wound‐healing and Transwell invasion assays. Furthermore, siGARP‐MSC exosomes impeded IL‐6 secretion and partly inactivated JAK1/STAT3 pathway, measured using ELISA and RT‐qPCR. In conclusion, MSC‐derived exosomes targeting GARP are a potential strategy for cancer therapy.  相似文献   

16.
17.
18.
19.
20.
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that develops in the head and neck area and has high annual mortality despite optimal treatment. microRNA‐218 (miR‐218) is a tumour inhibiting non‐coding RNA that has been reported to suppress the cell proliferation and invasion in various cancers. Thus, our study aims to determine the mechanism underlying the inhibitory role of miR‐218 in OSCC. We conducted a bioinformatics analysis to screen differentially expressed genes in OSCC and their potential upstream miRNAs. After collection of surgical OSCC tissues, we detected GREM1 expression by immunohistochemistry, RT‐qPCR and Western blot analysis, and miR‐218 expression by RT‐qPCR. The target relationship between miR‐218 and GREM1 was assessed by dual‐luciferase reporter gene assay. After loss‐ and gain‐of‐function experiments, OSCC cell proliferation, migration and invasion were determined by MTT assay, scratch test and Transwell assay, respectively. Expression of TGF‐β1, Smad4, p21, E‐cadherin, Vimentin and Snail was measured by RT‐qPCR and Western blot analysis. Finally, effects of miR‐218 and GREM1 on tumour formation and liver metastasis were evaluated in xenograft tumour‐bearing nude mice. GREM1 was up‐regulated, and miR‐218 was down‐regulated in OSCC tissues, and GREM1 was confirmed to be the target gene of miR‐218. Furthermore, after up‐regulating miR‐218 or silencing GREM1, OSCC cell proliferation, migration and invasion were reduced. In addition, expression of TGF‐β signalling pathway‐related genes was diminished by overexpressing miR‐218 or down‐regulating GREM1. Finally, up‐regulated miR‐218 or down‐regulated GREM1 reduced tumour growth and liver metastasis in vivo. Taken together, our findings suggest that the overexpression of miR‐218 may inhibit OSCC progression by inactivating the GREM1‐dependent TGF‐β signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号